首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A four‐port multiple input multiple‐output (MIMO) antenna with common radiating element is proposed for 2.4 GHz Wi‐Fi applications. It comprises a modified circular radiator fed by four identical modified feedlines, partial ground planes, and a diagonal parasitic element (DPE). The parasitic element is used to enhance the interport isolation. The antenna has a 2:1 Voltage standing wave ratio (VSWR) impedance band 2.34‐2.56 GHz and nearly omnidirectional radiation patterns. The radiation efficiency is more than 79% and gain is 2 dBi at resonant 2.43 GHz. The isolation in the given frequency band is 10 dB. At the 2.43 GHz, the isolation between adjacent ports (1, 2 and 1, 4) is 14 dB and between opposite ports (1, 3) is 12 dB. The mean effective gain (MEG) ≤ ?2.7 dB and envelope correlation coefficient is <0.01. The ?10 dB total active reflection coefficient bandwidth is 202 MHz. The antenna is designed for a Wi‐Fi device and the effectiveness of antenna has been checked for distance of ½ feet from the human head. The specific absorption rate (SAR) is found to be ≤0.17 W/Kg by CST simulation tool.  相似文献   

2.
The communication presents a simple dielectric resonator (DR) multiple‐input‐multiple‐output (MIMO) dual‐band antenna. It utilizes two “I”‐shaped DR elements to construct an “I”‐shaped DR array antenna (IDRAA) for MIMO applications. The ground plane of the antenna is defected by two spiral complementary meander lines and two circular ground slots. In the configuration, two “I”‐shaped DR elements are placed with a separation of 0.098λ. The antenna covers dual‐band frequency spectra from 3.46 to 5.37 GHz (43.26%) and from 5.89 to 6.49 GHz (9.7%). It ensures the C‐band downlink (3.7‐4.2 GHz), uplink (5.925‐6.425 GHz), and WiMAX (5.15‐5.35 GHz) frequency bands. Each DR element is excited with a 50‐Ω microstrip line feed with aperture‐coupling mechanism. The antenna offers very high port isolation of around 18.5 and 20 dB in the lower band and upper band, respectively. The proposed structure is suitable to operate in the MIMO system because of its very nominal envelope correlation coefficient (<0.015) and high diversity gain (>9.8). The MIMO antenna provides very good mean effective gain value (±0.35 dB) and low channel capacity loss (<0.35 bit/s/Hz) throughout the entire operating bands. Simulated and measured results are in good agreement and they approve the suitability of the proposed IDRAA for C‐band uplink and downlink applications and WiMAX band applications.  相似文献   

3.
A compact ultra‐wideband multiple‐input multiple‐output (UWB‐MIMO) antenna with good isolation and multiple band‐notch abilities is developed in this work. It consists of two quadrant shaped monopole antennas backed by ground stubs. A good isolation is achieved due to the two proposed extended curved ground stubs. The frequency rejection for the WLAN system is realized by loading a capacitive loaded loop resonator adjacent to the feed line. The band rejection for the WiMAX and LTE band43 system is achieved by embedding a quadrant shaped CSRR on each radiator's surface. The measured bandwidth of the antenna is 3.06 GHz‐11 GHz (|S11| < ?10 dB and |S21| < ?18 dB) with a band rejection from 3.5 GHz‐4 GHz to 5.1 GHz‐5.85 GHz, respectively. Time domain performances are investigated in terms of group and phase delay characteristics. Diversity characteristics are evaluated in terms of the envelope correlation coefficient, mean effective gain, and channel capacity loss.  相似文献   

4.
A compact ultra‐wideband (UWB) multiple‐input‐multiple‐output (MIMO) antenna with dual band elimination characteristics is presented. The proposed MIMO antenna is comprised of four identical elliptical shaped monopole radiators located orthogonally to each other. A second order Koch fractal geometry is applied on the edges of the ground planes of the radiating elements; to reduce the overall size of the MIMO antenna, without compromising the lower frequency response. Further, in order to eliminate the undesired resonant bands (3.5 and 5.5 GHz) from UWB, an elliptical complementary split ring resonator is introduced in the monopole radiator. For reducing inter‐element coupling in the proposed MIMO antenna, a different approach (of slotted edge substrate) is used, as a substitute of traditional decoupling stub/elements. In the entire operating band of 3 to 13.5 GHz, inter‐element isolation more than 22 dB and envelope correlation coefficient less than 0.008 are obtained. The measured parameters of the fabricated prototype antenna are found in good agreement with the simulated results.  相似文献   

5.
A compact two‐element multiple‐input‐multiple‐output (MIMO) antenna system with improved impedance matching and isolation is presented for future sub‐6 GHz 5G applications. The two identical tapered microstrip line fed modified rhombus‐shaped radiating elements are placed in the same orientation at a compact substrate area of 0.24λ0 × 0.42λ0 (where, λ0 at 3.6 GHz) on a shared rectangular ground. A remodeled T‐shaped ground stub is placed between a pair of radiating element to achieve improved impedance bandwidth and isolation. Further, a split U‐shaped stub connected to center of each radiating element to achieve the desired resonant frequency of 3.6 GHz. The proposed antenna covers a ?10 dB operating band of 3.34 to 3.87 GHz (530 MHz) with more than 20 dB isolation between a pair of elements. MIMO performances are also analyzed and experimentally validated. The measured performances of a prototype are found in good agreement with simulated performances. Further, the simulation study is carried out to see the effect of housing and extended ground plane on two‐element MIMO antenna for practical application. An idea of realization of 12‐element MIMO is also studied using the proposed two‐element MIMO antenna.  相似文献   

6.
A compact planar frequency reconfigurable dual‐band multiple‐input‐multiple‐output (MIMO) antenna with high isolation and pattern/polarization diversity characteristics is presented in this article for WiFi and WiMAX standards. The MIMO configuration incorporates two symmetrically placed identical antenna elements and covers overall size of 24 mm × 24 mm × 0.762 mm. Reconfiguration of each antenna element is achieved by using a PIN diode which allows antennas to switch from state‐1 (2.3‐2.4 GHz and 4.6‐5.5 GHz) to state‐2 (3.3‐3.5 GHz and 4.6‐5.5 GHz). In state‐1, the configuration offers isolation ≥18 dB and 20 dB in lower band (LB) and upper band (UB) respectively; whereas, in state‐2, isolation ≥21 dB and 20 dB in LB and UB respectively is achieved. The same decoupling circuit provides high isolation in dual‐band of two states, which makes overall size of the proposed design further compact. The antennas are characterized in terms of envelope correlation coefficient, radiation pattern, gain, and efficiency. From measured and simulated results, it is verified that the proposed frequency reconfigurable dual‐band multi‐standard MIMO antenna design shows desirable performance in both operating bands of each state and compact size of the design makes it suitable for small form factor devices used in future wireless communication systems.  相似文献   

7.
A metal‐frame‐integrated eight‐antenna array operating in the long term evolution bands 41/42/43 (2.496 GHz‐2.69 GHz, 3.4 GHz‐3.8 GHz) for future fifth generation multiple‐input multiple‐output (MIMO) applications in smartphones is presented and discussed. The proposed eight‐antenna MIMO array is formed by integrating four identical building blocks, each of which consists two dual‐mode monopole antenna elements with a neutralization line (NL) embedded in between. Part of the metal frame is exploited to increase the effective resonant length of the monopole antenna. By using the wideband NL, two transmission dips can be generated, and thus an improved isolation (>10 dB) is achieved. The proposed antenna array was simulated and experimentally tested. Good antenna efficiency (>44%) and low envelope correlation coefficient (<0.2) were obtained in the bands of interest. In an 8 × 8 MIMO system with 20 dB signal‐to‐noise ratio, the calculated ergodic channel capacity was as high as 38 bps/Hz in the low band, and 38.3 bps/Hz in the high band. Details of the proposed antenna array are described. The simulated, measured, and calculated results are presented.  相似文献   

8.
A method to significantly increase the gain and reduce the mutual coupling of microstrip multiple‐intput multiple‐output (MIMO) antenna based on metamaterial concept is presented. The μ‐negative and ε‐negative features of the proposed modified peace‐logo planar metamaterial (MPLPM) and two‐sided MPLPM (TSMPLPM) structures are calculated. The antenna structure consists of eight MPLPM slabs and two TSMPLPM, which are embedded in azimuth plane of a MIMO antenna vertically. The dimensions of MIMO antenna are 28 × 16 × 6.3 mm3 at 40 GHz. As a result, a compact MIMO antenna is simulated in comparison with primary microstrip structures. The corresponding return‐loss of the antenna is better than 10 dB over 34.5 to 45.5 GHz for Ka‐band applications. Good consent between the measured and simulated result is tacked. The maximum simulated gain of the structure is 15.5 dB at 40 GHz, creating a maximum gain improvement of 11.5 dB in comparison with a MIMO antenna without any metamaterial combinations. The value of the insertion‐loss (isolation) is 33 dB, which has improved by more than 25 dB compared to the conventional sample.  相似文献   

9.
In this article, a new compact eight‐element three‐dimensional (3D) design of ultra‐wideband (UWB) multiple‐input‐multiple‐output (MIMO) antenna is proposed. For realizing polarization diversity, four elements of the MIMO antenna are oriented horizontally and four elements are arranged vertically. In the horizontal arrangement, the antenna resonating elements are placed orthogonally to each other, which reduces interelement coupling and offers a consistent link with the wireless systems/devices. The proposed antenna shows a bandwidth (S11 ≤ ?10 dB) of 17.99 GHz (2.83‐20.82 GHz) and isolation larger than 15 dB in the resonating band. The proposed MIMO/diversity antenna performance parameters such as envelope correlation coefficient, diversity gain, and total active reflection coefficient are evaluated and presented. Furthermore, the unit cell of the MIMO system is simulated for the packaged environment and it is observed that the antenna housing does not affect the antenna performance.  相似文献   

10.
An investigation to enhance the decoupling between the elements of a compact wide band multiple‐input multiple‐output (MIMO) antenna is presented in this communication. A microstrip neutralization line (NL) is designed on the top of antenna surface to enhance the port isolation. The geometry is embedded on a jeans material to be apposite for the on‐body wearable applications. The antenna covers the frequency spectra from 3.14 to 9.73 GHz (around 102.4%) and fulfills the bandwidth requirements of WiMAX (3.2‐3.8 GHz), WLAN (5.15‐5.35/5.72‐5.85 GHz), C band downlink‐uplink (3.7‐4.2/5.9‐6.425 GHz), downlink defense (7.2‐7.7 GHz), and ITU (8‐8.5 GHz) bands. The port isolation is found to be more than 32 dB over the whole application bands. The antenna is appraised in a rich scattering environment with very minimal envelope correlation coefficient (ECC < 0.12) and great amount of diversity gain (DG > 9.8). The proposed MIMO antenna system is able to achieve the channel capacity loss (CCL) of less than 0.2 BPS/Hz throughout the whole operating band. The proposed structure is etched on an area of 30 × 50 mm2. The simulated and measured performances of the proposed antenna are in well‐matched state.  相似文献   

11.
This article proposes a multiple input multiple output (MIMO) antenna for 5G‐based vehicular communication applications. The designed MIMO antenna consist of two element iterated T‐shape antenna with defected ground structure (DGS) and split ring resonator. The antenna providing reflection coefficient S11 s11 ≤10 dB and bandwidth of 6.3 and 3.96 GHz over the frequency range of 26.83 to 33.13 GHz and 34.17 to 38.13 GHz, respectively. For the suitable future vehicular millimetric wave communications, this antenna achieved resonant frequencies at 28, 33, and 37 GHz. The designed antenna has achieved peak gain of 7.11 dB in operating band. It is fabricated on 12 x 25.4 x 0.8 mm3 Rogers RT duroid 5880 substrate with dielectric constant (εr) of 2.2. The antenna is placed on vehicle in virtual environmental using ANSYS SAVANT tool and the simulated results are showing good matching with the measured results of proposed MIMO antenna.  相似文献   

12.
A compact four‐element multiple‐input‐multiple‐output (MIMO) antenna for ultra‐wideband (UWB) applications with WLAN band‐notched characteristics is proposed here. The proposed antenna has been designed to operate from 2 to 12 GHz while reject the frequencies between 4.9 to 6.4 GHz. The four antenna elements are placed orthogonal to attain the polarization diversity and high isolation. A thin stub connected to the ground plane is deployed as a LC notch filter to accomplish the rejected WLAN band in each antenna element. The mutual coupling between the adjacent elements is at least 17 dB while it has low indoor and outdoor envelop correlation (<0.45) and high gain with compact size of two boards, each measuring 50 × 25 mm2. To validate the concept, the prototype antenna is manufactured and measured. The comparison of the simulation results showed good agreement with the measured results. The low‐profile design and compact size of the proposed MIMO antenna make it a good candidate for diversity applications desired in portable devices operating in the UWB region.  相似文献   

13.
A multi‐band directional multiple‐input–multiple‐output (MIMO) antenna system is presented based on a rectangular loop excited Quasi‐Yagi configuration. A 64% reduction in size is obtained using a rectangular meandered element as well as a small ground plane. The proposed two‐element MIMO antenna system covers the Telemetry L‐band and several LTE/WLAN bands. It has a wide measured bandwidth of 689 MHz (1.897–2.586 GHz) in the desired band centered at 2 GHz, and a measured bandwidth of more than 168 MHz across rest of the bands. The MIMO antenna system has a total size of 45 × 120 × 0.76 mm3, with a single element size of 55 × 60 × 0.76 mm3. The non‐desired back‐lobe radiation which is obtained using a small ground plane, is significantly reduced by using a novel defected ground structure (DGS) as compared with the complex techniques present in literature. The proposed DGS provides a high measured front‐to‐back ratio of 14 dB at 2 GHz and 11 dB in other bands. A maximum measured realized gain of 5.8 dBi is obtained in the desired band using a single parasitic director element. The proposed MIMO antenna system has a minimum measured radiation efficiency of 70%, isolation of 12 dB, and envelope correlation coefficient of 0.098 within all bands which ensures very good MIMO performance.  相似文献   

14.
In this article, a pair of unsymmetrical dual‐feed antennas with one shared radiator and two isolated ports is proposed for multiple‐input‐multiple‐output (MIMO) systems. The proposed antenna pair achieves high isolation between the two ports by properly adjusting the distance between the two feeding ports and the position and length of shorting strips on the radiator. The antenna has simple structure and covers the 3.3‐3.7 GHz band, which could meet the demand of future 5G applications. The measured results show that antenna has good impedance matching (better than 10 dB return loss) and high port isolation (better than 20 dB isolation) from 3.35 to 3.65 GHz. The total efficiencies are above 55% and the envelope correlation coefficient is <0.1, which is sufficient for MIMO applications.  相似文献   

15.
This article proposes a compact (43 × 26 × 0.8 mm3) dual‐band two‐element metamaterial‐inspired MIMO antenna system with high port isolation for LTE and WiMAX applications. In this structure, each antenna element consists of a square–ring slot radiator encircling a complementary split ring resonator. A tapered impedance transformer line feeds these radiating apertures and shows good impedance matching. A 2 × 3 array of two‐turn Complementary Spiral Resonator structure between the two antenna elements provides high dual‐band isolation between them. The fabricated prototype system shows two bands 2.34 – 2.47 GHz (suitable for LTE 2300) and 3.35 – 3.64 GHz (suitable for WiMAX). For spacing between two antennas of 10 mm only, the measured isolation between the two antenna elements in the lower band is around ?32 dB while that in the upper band is nearly 18 dB. The system shows a doughnut‐shaped radiation patterns. The peak measured antenna gains for the proposed MIMO system in the lower and higher bands are 3.9 and 4.2 dBi, respectively. The MIMO system figure of merits such as the envelope correlation coefficient, total efficiency are also calculated and shown to provide good diversity performance.  相似文献   

16.
This article investigates a dual band multiple input multiple output (MIMO) cylindrical dielectric resonator antenna (cDRA) for WLAN and WiMAX applications. It consists of two symmetrical orthogonally placed radiators. Each radiator is excited through a narrow rectangular aperture with the help of a microstrip line. For higher mode excitation, the proposed structure uses dual segment DRA which apparently looks like stacked geometry. The aperture fed dielectric resonator works as a feed for upper cDRA to generate higher order mode. The presented radiator covers the band between 3.3‐3.8 GHz and 5‐5.7 GHz. The measured isolation is better than 20 dB in the desired band. The average gain and radiation efficiency achieved for the proposed antenna is 6.0 dBi and 85%, respectively at the operating frequency band. In the proposed geometry, broadside radiation patterns are achieved by exciting HEM11δ and HEM12δ modes in a stacked geometry. Different MIMO performance parameters (ECC, DG, MEG, and CCL) are also estimated and analyzed. The prototype of proposed antenna is fabricated and tested. The measured outcomes are in good accord with the simulated one.  相似文献   

17.
A compact four element multi‐band multi‐input multi‐output (MIMO) antenna system for 4G/5G and IoT applications is presented in this paper. The proposed antenna is developed using the theory of characteristic modes helping in systematic design of MIMO antenna system. It consists of four L‐shaped planar inverted‐F antenna (PIFA) elements each operating at 3.5, 12.5, and 17 GHz bands with the bandwidth of 359 MHz, 1 GHz, and more than 3.7 GHz, respectively. The proposed antenna system is suitable for both 4G/5G and internet of things devices as it shows the satisfactory MIMO system performance. Good isolation characteristics are observed by implementing complimentary Metamaterial structure on the ground plane resulting in isolation level lower than ?21 dB between the antenna elements. The proposed antenna is fabricated and experimental results are also presented and discussed.  相似文献   

18.
In this paper, a compact multielement ultra‐wideband (UWB) multiple‐input multiple‐output (MIMO) antenna is presented. The proposed antenna is designed by integrating novel technique of stub‐loaded slot, split square ring (SSR), and fractal‐inspired isolator. The antenna size is effectively miniaturized by implementing three‐sided symmetrical stub‐loaded Koch slot and square split ring. The impedance bandwidth is broadened by using small notched partial ground plane. The mutual coupling between the element is impressively reduced by isolating the structure with a Sierpinski fractal. As a result, the proposed antenna achieves a UWB response with a very broad impedance bandwidth of 3.1 to 19 GHz. Moreover, the proposed antenna obtains high peak stable gain and diversity gain of up to 10 dBi, lower group delay (<1 ns), and lower envelop correlation coefficient of <.01. The proposed antenna has electrically small dimensions of 35 × 53 × 0.8 mm. With this low‐profile configuration, the proposed antenna is especially a good candidate for portable UWB‐MIMO wireless communication system.  相似文献   

19.
A novel compact self‐similar fractal ultra‐wideband (UWB) multiple‐input‐multiple‐output (MIMO) antenna is presented. This fractal geometry is designed by using iterated function system (IFS). Self‐similar fractal geometry is used here to achieve miniaturization and wideband performance. The self‐similarity dimension of proposed fractal geometry is 1.79, which is a fractional dimension. The antenna consists of two novel self‐similar fractal monopole‐antenna elements and their metallic area is minimized by 29.68% at second iteration. A ground stub of T‐shape with vertical slot enhances isolation and impedance bandwidth of proposed MIMO antenna. This antenna has a compact dimension of 24 × 32 mm2 and impedance bandwidth (S11 < ?10 dB) of 9.4 GHz ranging from 3.1 to 12.5 GHz with an isolation better than 16 dB. The various diversity performance parameters are also determined. There is good agreement between measured and simulated results, which confirms that the proposed antenna is acceptable for UWB applications.  相似文献   

20.
A novel compact planar dual‐band multiple input multiple output (MIMO) antenna with four radiating elements for 5G mobile communication is proposed. Each radiating element has a planar folded monopole, which is surrounded by L‐shaped meta‐rim extended ground stubs. The compact folded arms act as the main radiating elements, while combined with the L‐shaped meta‐rim stubs, the proposed antenna forms multiple resonances so as to achieve dual‐band coverage. The simulated and measured results show that the proposed antenna has two wide bands of ?6 dB return loss, consisting of 1.6 to 3.6 and 4.1 to 6.1 GHz, respectively. Without any additional isolation structure between the elements, the isolation for the proposed 2 × 2 MIMO antenna in both desired bands can be achieved better than 12 dB. The measured results show that the proposed MIMO antenna with good performance, that is, stable radiation patterns, high efficiencies, low specific absorption ratio (SAR) to human tissues, is suitable for WLAN/LTE, 4G and future 5G mobile phone applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号