首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The natural rubber (NR) nanocomposites were fabricated by filling ionic liquid (1‐allyl‐3‐methyl‐imidazolium chloride, AMI) modified nano‐silica (nSiO2) in NR matrix through mechanical mixing and followed by a cure process. Based on the measurements of differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), solid state nuclear magnetic resonance spectroscopy, and Raman spectroscopy, it was proved that AMI could interact with nSiO2 through hydrogen bonds. With the increase of AMI content, the curing rate of nSiO2/NR increased. The results of bound rubber and dynamic mechanical properties showed that polymer–filler interaction increased with the modification of nSiO2. Morphology studies revealed that modification of nSiO2 resulted in a homogenous dispersion of nSiO2 in NR matrix. AMI modified nSiO2 could greatly enhance the tensile strength and tear strength of nSiO2/NR nanocomposites. Compared to unmodified nSiO2/NR nanocomposite, the tensile strength of AMI modified nSiO2/NR nanocomposite increased by 102%. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44478.  相似文献   

2.
Studies into solvent resistance and aging properties of blends of natural rubber and epoxidized low molecular weight natural rubber were carried out. Vulcanization of the blends using the semi‐efficient vulcanization (semi‐EV) system was found to have curing advantages over conventional vulcanization (CV) and efficient vulcanization (EV) systems. The rheological properties (cure time, t90, and scorch time, t2), solvent resistances, and aging properties of the vulcanizates were found to improve as the level of epoxidized low molecular weight natural rubber in the blends increases. The mechanical properties of the blends were also found to be within the accepted level for NR vulcanizates. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1733–1739, 2005  相似文献   

3.
Hygrothermally decomposed polyurethane (HD‐PUR) was mixed up to 20 phr in epoxidized natural rubber (with 50 mol % epoxidation; ENR50) recipes, and the curing and mechanical behaviors were studied. Mechanical testing of the ENR50/HD‐PUR vulcanizates determined the tensile, tear, compression‐set, hardness, abrasion, hysteresis, and resilience properties. No significant changes were observed in the tensile properties with the incorporation of HD‐PUR. The ENR50 compounds showed an increase in compression set with increasing HD‐PUR content. Rubbers cured by a semi‐efficient vulcanization system gave the best overall performance. A further improvement in curing and mechanical properties was achieved by the carbon black grade N330 being replaced with a more active grade (N375). © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2265–2276, 2002  相似文献   

4.
The effects of epoxidized natural rubber (ENR) and maleic anhydride‐grafted polybutadiene (PB‐g‐MA) as compatibilizers to rubber formulations with and without organo‐modified layered silicates are investigated. The physical properties and curing characteristics of composites are studied by moving die rheometer, rubber process analyzer, tensile, tear, and hardness testing. The state of organoclay intercalation was determined by X‐ray diffraction method. The addition of compatibilizers, especially ENR 50, results in further intercalation or exfoliation of the organoclay that increased the clay dispersion in the rubber matrix. ENR 50 with organo‐modified clay improves the physical properties and changes the curing profile. The addition of PB‐g‐MA without organoclay increases the tensile strength (σmax) by increasing the stock viscosity of the rubber compound. Interestingly, simultaneous increase in hardness and σmax is achieved in the presence of both compatibilizers, a characteristic that is difficult to achieve and sometimes required in rubber processing. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
Epoxidized natural rubber (ENR) samples of various epoxidation degrees were synthesized from natural rubber (NR) latex, and 25 mole% epoxide of ENR was used to prepare ENR room temperature-curable films for coating applications. The films were prepared from rubber solutions. Trimethylolpropane tris(2-mercaptoacetate) (TMP-SH) was used as a curing agent. The effect of the thiol additive on the tensile and thermal properties of epoxidized natural rubber (ENR) was investigated. For the sake of comparison, NR and TMP-SH-containing formulations were also prepared.

It was observed that the addition of TMP-SH improved the tensile, thermal and swelling properties of ENR, indicating the formation of crosslinks. On the other hand, the addition of TMP-SH didn't improve the properties of NR, indicating the absence of reaction with TMP-SH. On the basis of data on the properties of the ENR films of this work it is demonstrated that these are appropriate for coating applications.  相似文献   

6.
Styrene-based deproteinized natural rubber (SNR) latex was synthesized by in situ polymerization. Three pre-vulcanization systems [conventional-cured (CV), semi-efficient-cured (Semi-EV), and efficient-cured (EV)] were studied in terms of tensile and adhesion properties. Good tensile properties were observed for CV and EV SNR. The Semi-EV SNR showed the best adhesion properties based on the good anchorage performance in all substrate pairings (polystyrene–polystyrene, polystyrene–rubber, and rubber–rubber). The pH modification on SNR latex via KOH addition has beneficial effects of removing protein layers, resulting in more styrene grafting sites in the rubber molecules. Consequently, the tensile and adhesion properties of the SNR are improved as more styrene polymers are grafted onto the rubber matrix. Semi-EV SNR with pH 12 has superior adhesive performance; hence, it is suitable for use as a pressure-sensitive adhesive.  相似文献   

7.
Ethylene vinyl acetate (EVA)/epoxidized natural rubber (ENR) blends containing 10 and 30 wt % ENR were prepared by using an internal mixer. Five different types of curing systems were employed: dicumyl peroxide (DCP), sulfur (S), phenolic resin (Ph), DCP + S, and DCP + Ph. DCP could crosslink with both EVA and ENR while S and Ph were curing agents for ENR. The DCP system provided the lowest tensile properties and tear strength because of low crosslinking in ENR phase. Addition of sulfur or phenolic resin increased the mechanical properties due to a better vulcanization of the rubber phase. The mechanical properties of the blends decreased with increasing ENR content. The rubber particle size in the blends containing 30% ENR played a more important role in the mechanical properties than the blends containing 10% ENR. ENR particle size did not affect heat shrinkability of EVA and a well vulcanized rubber phase was not required for high heat shrinkage. Furthermore, heat shrinkage of the blends slightly changed as the ENR content increased for all curing systems. With regard to the mechanical properties and heat shrinkability, the most appropriate curing system was DCP + Ph and in the case the 10 wt % ENR content produced a more favorable blend. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
The effect of epoxidized natural rubber (ENR) with 50 mol% epoxidation (ENR 50) on the processing behaviors, tensile properties, morphology, and thermal properties of linear‐low‐density polyethylene (LLDPE)/soya powder blends was investigated. The LLDPE was blended with various soya powder contents in a Haake internal mixer at 150°C and a rotor speed of 50 rpm for 10 min. The tensile properties were tested by using an Instron tensometer according to ISO 527. The thermal stability of the blends was determined by using a thermogravimetric analyzer (TGA). The tensile strength and elongation at the breakage point were significantly improved by the addition of ENR 50, as evidenced by morphological analysis using scanning electron microscopy (SEM). On the other hand, the tensile modulus increased with soya powder content up to 20% and decreased thereafter. The crystallinity and crystallization temperatures of the blends decreased with the incorporation of ENR, and the thermal stability of the blends was lower with higher soya powder content. However, ENR 50 improved the thermal stability of LLDPE/soya powder blends. J. VINYL ADDIT. TECHNOL., 2010. © 2010 Society of Plastics Engineers  相似文献   

9.
The utilization of waste rubber powder in polymer matrices provides an attractive strategy for polymer waste disposal. Addition of recycled acrylonitrile‐butadiene rubber (NBRr) in rubber compounds gives economic (lowering the cost of rubber compounds) as well as processing advantages. In this study, the properties of styrene butadiene rubber (SBR)/NBRr blends with and without epoxidized natural rubber (ENR‐50) as a compatibilizer were determined. The results such as thermal gravimetric analysis (TGA), fatigue life, and natural weathering test of SBR/NBRr blends with and without ENR‐50 were carried out. Results showed that TG thermograms of SBR/NBRr blends with ENR‐50 show lower thermal stability compared blends without ENR‐50. The incorporation of ENR‐50 into SBR/NBRr blends has reduced char residue compared SBR/NBRr blends without ENR‐50. The incorporation of ENR‐50 in SBR/NBRr blends has increased the rigidity of the blends thus lowering the fatigue life. The increment in tensile properties retention of SBR/NBRr blends with ENR‐50 indicated the enhancement on weathering resistant. The surfaces of SBR/NBRr blends with ENR‐50 after 6 months exposure showed a minimal severity of crack compared with SBR/NBRr blends without ENR‐50. It revealed that the scale of cracks has reduced indicating well‐retaining interfacial adhesion between SBR and NBRr with the presence of ENR‐50 as a compatibilizer. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
The present work aims to study the relationship among the thermal ageing stability, dynamic properties, cure systems, and antioxidants in natural rubber (NR) vulcanisates. Thermal degradation behavior of NR vulcanisates has been investigated and correlated to the changes in cross-link density, tensile and dynamic mechanical properties. The results obtained show that thermal ageing properties of NR vulcanisates depend strongly on cross-link density, which changes during thermal oxidative ageing or the so-called postcuring effect. In addition, the increases in ageing temperature and time lead dominantly to the postcuring and linkages scission phenomena in vulcanisates cured with CV and EV systems, respectively. With increasing ageing temperature, the tensile strength shows sharp drop at ageing temperature higher than 70°C and 100°C for the specimens cured with CV and EV systems, respectively. The sharp drop of tensile strength of vulcanisates cured with CV system is attributed to the too high cross-link density, which is caused by the postcuring effect. In the case of the vulcanisates cured with EV system, the linkage scission causes the sharp drop of tensile strength. The addition of amine-based antioxidant appears to improve ageing properties. However, the excessive antioxidant reduces tensile properties via a decrease in cross-link density.  相似文献   

11.
A thermally induced shape memory polymer based on epoxidized natural rubber (ENR) was produced by curing the ENR with 3‐amino‐1,2,4‐triazole as a crosslinker in the presence of bisphenol‐A as a catalyst. Dynamic mechanical and tensile analysis was conducted to examine the variation of glass transition temperature, stiffness, and extensibility of the vulcanizates with the amount of curatives. Shape memory properties of the ENR vulcanizates were characterized by shape retention and shape recovery. It was revealed that the glass transition temperature of the ENR vulcanizates could be tuned well above room temperature by increasing the amount of curing agents. Also, ENR vulcanizates with Tg higher than ambient temperature showed good shape memory effects under 100% elongation, and the response temperatures of the recovery were well matched with Tg of the samples. Copyright © 2006 Society of Chemical Industry  相似文献   

12.
Thermoplastic elastomers (TPEs) based on dynamically cured epoxidized natural rubber/high‐density polyethylene (ENR/HDPE) blends were prepared. Influence of the process oil, blend proportion, and curing systems were investigated. It was found that the oil‐extended thermoplastic vulcanizates (TPVs) exhibited better elastomeric properties and improved ease of the injection process. Increasing the proportion of ENR caused increasing elastic response of elongation at break, tension set properties, and tan δ. It was also found that the TPV treated with phenolic resin exhibited superior mechanical properties and the smallest vulcanized rubber domains. The TPV treated with the conventional peroxide co‐agent curing system showed superior strength properties but had poor elastomeric properties. POLYM. ENG. SCI., 2009. © 2008 Society of Plastics Engineers  相似文献   

13.
The curing properties and adhesive strengths of the epoxidized natural rubber (ENR, 25 mole percent epoxidation) modified epoxy systems are studied with differential thermal calorimetry (DSC), scanning electron microscopy (SEM), and lap shear strength (LSS) measurement. The results of DSC analyses indicate that the curing exotherm, the curing rate, the reaction order, and the glass transition temperature of the epoxy system are affected by the presence of reactive ENR. From SEM micrographs, it is obtained that a second spherical rubber phase is formed during cure and the particle size of the rubber phase is increased by increasing the curing temperature and the ENR content. The changes of the volume fraction of the rubber phase and the Tg of the cured systems indicate that the mutual dissolution between epoxy resin and ENR happens and which changes with the curing temperature and the ENR content. The LSS of adhesive joints prepared with the ENR modified adhesives are all lower than those of the unmodified epoxy system, and decrease with increasing the amount of ENR added because of the limited compatibility of the ENR with the epoxy matrix.  相似文献   

14.
Recently, cellulose‐based hydrogel nanocomposite materials have been attracted increasing attention owing to their potential applications in different areas including medical, electrical, optical, and magnetic fields. This is due to the fact that cellulose is one of the most abundant resources and possesses several unique properties required in medical fields, whereas silica nanoparticles (nSiO2) play an important role in developing materials with high functionality. In this study, cottonseed hull (CSH) was used as a source of cellulose and nSiO2 was used to prepare hydrogel nanocomposite films via phase inversion method without chemical crosslinking agent of cellulose. CSH was first pre‐treated with sodium hydroxide (NaOH) and sodium hypochlorite (NaOCl) for delignification and bleaching, respectively. The pre‐treated CSH exhibited whiter fiber and lower amount of lignin as compared with the untreated CSH. The properties of cellulose‐base hydrogel were found to be improved as a result of the addition of nSiO2 at 2–6 wt % for tensile strength and up to 10 wt % for modulus and elastic modulus (G′). However, the elongation at break was decreased with the incorporation of nSiO2. Moreover, the TEM images displayed the nano‐grape structure of nSiO2 surrounded by cellulose molecules. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44557.  相似文献   

15.
《Polymer Composites》2017,38(6):1151-1157
Epoxidized natural rubbers (ENRs) with three different epoxide contents (i.e., 20, 35, and 50 mol% indicated as ENR20, ENR35, and ENR50, respectively) were prepared. They were then reinforced with 3‐methyacryloxypropyl trimethoxysilane‐modified nanosilica (MPTS‐SiO2). Influence of epoxide level in ENR molecules on morphological, mechanical, and dynamic mechanical properties of the ENR nanocomposites was investigated. The scanning electron microscopy results revealed larger agglomerates of SiO2 were found in the ENR composites with higher epoxide content. Furthermore, the strength and moduli of the ENR nanocomposites increased with increasing epoxide content. However, the optimal tensile strength and elongation at break were observed in the nanocomposites with the intermediate level of epoxide contents. The correlation between the strength properties and the interfacial silica‐matrix adhesion indicated that the maximum interfacial adhesion of the nanocomposites was observed in the nanocomposite with ENR35. Also, DMA results indicated stronger interaction between ENR35 and MPTS‐SiO2 due to higher storage modulus. POLYM. COMPOS., 38:1151–1157, 2017. © 2015 Society of Plastics Engineers  相似文献   

16.
考察了传统、半有效、有效硫化体系对溶聚丁苯橡胶T2000R基本物理性能的影响。并且对T2000R和乳聚丁苯橡胶ESBR1502胶料的基本性能进行了对比。结果表明,各硫化体系下T2000R的加工安全性均优于ESBR1502。且T2000R半有效硫化体系的加工性能较好;采用半有效硫化体系的T2000R硫化胶的交联密度、拉伸强度和100%定伸应力均高于传统和有效硫化体系;T2000R有效硫化体系硫化胶的耐裂口增长能力最好。  相似文献   

17.
Epoxidized natural rubber/Ethylene vinyl acetate copolymer (ENR‐50/EVA) blends with different ratios were prepared by using a Haake internal mixer. The effect of the blend ratio on the processing, tensile properties (such as tensile strength, elongation at break, Young's modulus and stress–strain behavior), morphology, dynamic mechanical properties, and thermal properties has been investigated. The tensile properties increase with the increase of EVA content, whereas the stabilization torque increases with the increase of ENR‐50 content in the blend. In 40:60 and 50:50 blend of ENR‐50/EVA, both the phases exist as continuous phases, producing a co‐continuous morphology. At these blend ratio, the drastic change in properties were noted, indicating that the phase inversion occurs. The results on dynamic mechanical properties revealed that the blends are compatible. Blending of ENR‐50 and EVA lead to the improvement in thermal stability and 50:50 blend ratios is the most stable blend. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1504–1515, 2006  相似文献   

18.
At glass transition temperature, Tg the rubber compound becomes stiff and brittle and it loses all its rubbery characteristics. This article deals with the changes in Tg of rubber blends based on natural rubber and polybutadiene rubber of varying vinyl content having different types and content of plasticizers, different curing systems and its effect on physico‐mechanical properties to improve its freezing resistance. The plasticizers used were dioctylphthalate (DOP), tricrecylphosphate (TCP), dioctyladipate (DOA), and oil type plasticizers like parafinic oil (P#2) and aromatic oil (A#2). Among the plasticizers, when DOP and DOA content was high, an appreciable decrease of Tg was found compared to TCP. Moreover, there was a remarkable decrease of Tg using DOA plasticizer, which shows more effective on freezing resistance. However, there was not much change in Tg with oil‐type plasticizers with high oil content compared to TCP plasticizer. The effect of cross‐linking systems such as conventional sulfur vulcanization (CV), efficient sulfur vulcanization (EV), and dicumyl peroxide (DCP) and rubber blends with varying vinyl content in polybutadiene rubber were also carried out. It was found that Tg in different cross‐linking system decreased in this order: CV < EV < DCP. It reveals that DCP cross‐linking system affect more for improving freezing resistance. Physico‐mechanical properties such as tensile strength, tear strength, hardness were also measured. The ratio of initial slope (M0) to steady‐state slope (M1), M0/M1 in tensile curves of different blends were verified, which in turn related to the physico‐mechanical properties and freezing resistance of rubber compounds. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39795.  相似文献   

19.
The curing behavior and physical properties of dicyanate/polyetherimide (PEI) semi‐interpenetrating polymer network (IPN) systems were investigated. Differential scanning calorimetry (DSC) was used to study the curing behavior of the dicyanate/PEI semi‐IPN systems. The curing rate of the semi‐IPN system decreased as the PEI content increased. An autocatalytic reaction mechanism can describe well the curing kinetics of the semi‐IPN systems. The reaction kinetic parameters were determined by fitting DSC conversion data to the kinetic equation. The glass transition temperature of the semi‐IPNs decreased with increasing PEI content. Two glass transitions due to phase‐separated morphology were observed for the semi‐IPN containing over 15 phr (parts per hundred parts of dicyanate resin) PEI. The thermal stability and dynamic mechanical properties of the semi‐IPNs were measured by thermal analysis.  相似文献   

20.
Polylactic acid/ethylene glycol triblock copolymer (LLA46EG46LLA46) was prepared and used in a crosslink process of epoxidized natural rubber (ENR) by employing a ring‐opening reaction using Sn(Oct)2 as a catalyst. The OH‐capped copolymer acts as a macromolecular crosslinking agent in the formation of ENR networks, leading to drastic enhancement in tensile properties. Crosslink efficiency and chemical structures of the cured materials are examined by solvent fractionation, swelling experiments, XRD, 1H‐NMR, and ATR‐FTIR spectroscopy. The efficiency of the curing process is dependent on the ENR/copolymer feed ratios. The degree of property improvement and gas permeability/selectivity behaviors of the cured materials are strongly dependent on the copolymer content and the efficiency of the curing process. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号