首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The wideband bandpass filtering branch‐line balun with high isolation is presented in this paper. The proposed balun can be designed for wideband performances by choosing a proper characteristics impedance of input vertical transmission line and odd‐mode impedance of parallel‐coupled lines. The proposed balun was designed at a center frequency (f0) of 3.5 GHz for validation. The measured results are in good agreement with the simulations. The measured power divisions are ?3.31 dB and ?3.24 dB at f0 and ?3 ± 0.17 dB within the bandwidth of 0.95 GHz (3 GHz to 3.95 GHz). The input return loss of 24.09 is measured at f0 and higher than 20 dB over the same bandwidth. Moreover, the measured output losses are better than 11 dB within a wide bandwidth. The isolation between output ports is 20.32 dB at f0 and higher than 13.2 dB for a broad bandwidth from 1 GHz to 10 GHz. The phase difference and magnitude imbalance between two output ports are 180° ± 4.5° and ± 0.95 dB, respectively, for the bandwidth of 0.95 GHz.  相似文献   

2.
This article presents a newly circularly polarized (CP) antenna for V2X's dedicated short range communications applications. Its CP characteristic is enabled by a 70 Ω sequential phase feeding network and sequential rotation technique designed on top of the substrate. It has features of ≈90° phase difference in sequence between ports of S21 = 2.4°, S31 = ?87°, S41 = ?180°, and S51 = ?276°, resulting in a 2.19 dB axial ratio centered at 5.9 GHz. The length of the SP feeding network to each ports designed in the different form of meander lines are the key to control the generated phase at the center frequency It also contributes to the smaller final size of 0.59λ × 0.59λ. The proposed antenna operated from 5.850 to 5.925 GHz with a gain between 4 and 6 dBi. The gains are radiated in bidirectional mode due to the presence of the complimentary dipoles located on the opposite side of the substrate. These features indicate the suitability of the proposed antenna in compliance to the ITS‐G5 OBU V2X standard.  相似文献   

3.
A K/Ka‐band (22‐33 GHz) high‐gain aperture shared multibeam parabolic reflector antenna is proposed. It performs a two‐dimensional beam scanning from a shared single parabolic reflector by introducing off‐focal feeds. The feed array is placed on and off the focal of the parabolic reflector. Traditionally, the feed blockage has a great impact on the performance of the antenna, which reduces the gain and increases the sidelobe level. The purpose of this paper is to suppress the negative effects of feed blockage by using hybrid material processing method. Both dielectric and metallic 3D printing technologies are used for antenna fabrication. The parabolic reflector antenna is printed by selective laser melting using aluminum alloy. The feed array and the supporting structures are printed by stereolithography apparatus in resin to control the blockage. The method helps to suppress the sidelobe level from ?10 to ?15 dB and to enhance gain by up to 2.3 dBi. The reflection coefficient is less than ?10 dB, while the coupling coefficient between the ports is less than ?20 dB over the entire designed band. At 31.5 GHz, the simulated maximum gain of the antenna are 30.7, 29.1, and 29.7 dBi, when different port separately excites. Multiple beams at ±15° and 0° are observed on both E‐ and H‐planes. Besides, it also verifies the possibility to use dielectric and metallic 3D printing technologies in hybrid for microwave device fabrication.  相似文献   

4.
In this article, a modified microstrip Wilkinson power divider with harmonics suppression for GSM communications applications is presented. For low‐pass filter designing, one open stub, one radial resonator, and two rectangular resonators are used. According to results related to insertion losses (|S21| and |S31|), stopband is wide and equal to 7.5 GHz (3.4‐10.9 GHz), under the condition of 20 dB harmonic suppression level. The results show that at the designed frequency of 1.8 GHz, the input return loss (|S11|) and output return losses (|S22| and |S33|) are better than 22 dB, and the isolation between of output ports (|S32|) is better than 30 dB. The size of the proposed power divider is compact and equal to 10.6 × 14.6 mm2. Finally, the proposed power divider was fabricated and the measurement results illustrate a good agreement with simulation results.  相似文献   

5.
A dual‐mode patch antenna with pattern diversity that is beam‐tilted in a specific direction is presented. By placing a rectangular metal cavity below the circular patch and simultaneously shorting one end of the patch, the antenna produces tilted beams for dual‐mode radiation patterns. One pattern is excited using a proximity‐fed L‐shaped probe that generates a beam with a tilt angle of 25° from the broadside direction. The second pattern is excited using a coplanar waveguide (CPW)‐based feeding network that generates two beams with a tilt angle of θmax = ±45° in the directions of ?max = 70° and ? 70°. The tilt angle can be varied by adjusting the metal cavity's length. A prototype antenna for operation at 2.38 GHz was fabricated and measured. The results indicate that the overlapped bandwidth (|S11| < ?10 dB) for the two patterns is 330 MHz (2.22‐2.55 GHz). The measured peak gains for the two patterns are 6.74‐6.94 dBi and 5.82‐6.74 dBi, respectively. The isolation between the two ports is 18 dB.  相似文献   

6.
In this article, a 4 × 4 linear‐phased patch array antenna, consisting of four 1 × 4 patch subarrays and a true time‐delay multiline phase shifter, is proposed on a thin film liquid crystal polymer substrate at Ka‐band. The patch antenna is designed with a gain of 6 dBi at 35 GHz and a bandwidth of 23% centered at 35 GHz. To enhance the gain and symmetrize the beam patterns of the 4 × 4 array, a 1 × 4 patch subarray in the E‐plane was designed and characterized. The subarray produces an enhanced gain of 11 dBi and a wide beamwidth of ±38° in the H‐plane for beam steering. The proposed phase shifter comprises a 1 × 4 microstrip line power splitter and a piezoelectric transducer‐controlled phase perturber. A large phase variation of up to 370° and a low insertion loss of less than 2 dB were demonstrated for the phase shifter at Ka‐band. The integrated phased array attains a gain of 15.6 dBi, and a continuous true‐time delay beam steering of up to 33 ± 1° from 31 to 39 GHz. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:199–208, 2016.  相似文献   

7.
This article presents a 2 × 2 series fed 2.4 GHz patch antenna array having multiple beam switching capabilities by using two simple 3 dB/90° couplers to achieve required amplitude and phase excitations for array elements with reduced complexity, cost and size. The beam switching performance with consistent gain and low side lobe levels (SLL) is achieved by exciting the array elements from orthogonally placed thin quarter‐wave (λg/4) feeds. The implemented array is capable to generate ten (10) switched‐beams in 2‐D space when series fed elements are excited from respective ports through 3 dB quadrature couplers. The dual polarized characteristics of presented array provide intrinsic interport isolation between perpendicularly placed ports through polarization diversity to achieve independent beam switching capabilities for intended directions. The implemented antenna array on 1.575 mm thick low loss (tan δ = 0.003) NH9450 substrate with εr = 4.5 ± 0.10 provides 10 dB return loss impedance bandwidth of more than 50 MHz. The measured beam switching loss is around 0.8 dB for beams switched at θ = ±20°, Ф = 0°, 90°, and 45° with average peak gain of 9.5 dBi and SLL ≤ ?10 dB in all cases. The novelty of this work is the capability of generating ten dual polarized switched‐beams by using only two 3 dB/90° couplers as beam controllers.  相似文献   

8.
In this article, a wideband circularly polarized (CP) dielectric resonator (DR) over an asymmetric‐slot radiator based hybrid‐DR antenna is proposed with bi‐directional radiation characteristics. Bi‐directional CP radiation of the dual sense is obtained using a rectangular‐DR over asymmetric‐rectangular‐slot radiator with L‐shaped feed line. The asymmetric‐slot radiator feed by L‐shaped stub with the coplanar waveguide is used for generating two orthogonal modes, namely TE x δ11 and TEy1δ1 in the combined (rectangular‐DR and asymmetric‐slot radiator) hybrid‐DR antenna, which is verified by the distribution of electric field inside the rectangular DRA. The measured reflection coefficient bandwidth (S11 < ?10 dB) and axial ratio (AR) bandwidth (AR < 3 dB) of the hybrid‐DR antenna are 80.5% (1.87‐4.39 GHz) and 43.8% (1.75‐2.73 GHz), respectively. The antenna radiation is in the broadside (θ = 0°, ? = 0°) direction as well as in the backside (θ = 180°, φ = 0°) direction with equal magnitudes in both the directions. Right‐handed and left‐handed CP waves are achieved respectively, in the boresight (+Z) and the backside (?Z) directions. The proposed CP hybrid‐DR antenna gives an average gain of 3.55 dBic and radiation efficiency of 95.0% in both directions. The proposed antenna covers various wireless useful bands such as ISM 2400 band, Wi‐Fi, Bluetooth, and Wi‐MAX (2.5‐2.7 GHz).  相似文献   

9.
A dual‐port reduced size multiple input multiple output (MIMO) Dielectric Resonator Antenna (DRA) has been studied and proposed. The MIMO antenna consists of a Rectangular Dielectric Resonator antenna, which is fed by two symmetrical feed lines for orthogonal mode excitation. The proposed antenna is suitable for operation over various long term evolution (LTE) bands. A measured bandwidth of 264 MHz for |S11| S‐parameters. Based on these results, it can be concluded that the proposed antenna can be a suitable candidate for MIMO applications. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:495–501, 2015.  相似文献   

10.
A broadband high‐gain circularly polarized (CP) microstrip antenna operating in X band is proposed. The circular polarization property is achieved by rotating four narrow band linearly polarized (LP) microstrip patch elements in sequence. Since the conventional series‐parallel feed network is not conducive to the miniaturization of the array, a corresponding simplified feed network is designed to realize the four‐way equal power division and sequential 90° phase shift. With this feed network, the impedance bandwidth (IBW) of the CP array is greatly improved compared with that of the LP element, while maintaining a miniaturized size. Then, parasitic patches are introduced to enhance the axial ratio bandwidth (ARBW). A prototype of this antenna is fabricated and tested. The size of proposed antenna is 0.93λ0 × 0.93λ0 × 0.017λ0 (λ0 denotes the space wavelength corresponding to the center frequency 10.4 GHz). The measured 10‐dB IBW and 3‐dB ARBW are 13.6% (9.8‐11.23 GHz), 11.2% (9.9‐11.07 GHz) respectively, and peak gain in the overlapping band is 9.8 dBi.  相似文献   

11.
This paper presents a novel two layers beam‐steering array antenna fed by a 4 × 4 modified Butler matrix. Each of the radiation elements have been replaced by a collection of 2 × 2 circularly polarized (CP) square patches, which joined together by a modified sequentially rotated feed network. The antenna array consists of 2 × 5 CP square patches, which connected to four ring sequential rotation and fed by butler matrix. The proposed Butler matrix which plays a role as beam‐steering feed network consists of four novel 90° circular patch couplers and two 45° half circular patch phase shifter. Altogether, using of a 2 × 5 phased array antenna and a modified Butler matrix cause to empower array antenna for covering frequency range between 4.67 to 6.09GHz, the maximum gain of 14.98 dB and 3‐dB axial ratio bandwidth of 1.2GHz (4.9~6.1GHz) is attained.  相似文献   

12.
This article proposes a compact multiple‐input multiple‐output (MIMO) antenna with the electromagnetic band gap (EBG) structures for mobile terminals. The proposed MIMO antenna is composed of two radiation patches in which diagonal and folded microstrip lines are utilized to control the frequency bands. The radiation patch, one EBG structure and a rectangular‐shaped ground plane are etched on both sides of the antenna. The EBG structures have been employed for reducing the mutual coupling between the antenna elements. As a result of the effect of these structures, the mutual coupling between the two elements is reduced by less than ?30 dB. The proposed antenna is implemented on an FR4 substrate with dimensions 20 × 10 × 1 mm3. According to measured results, frequency ranges of 2.2 to 3.6 GHz and 5.1 to 5.9 GHz with S11 < ?10 dB and also 3.7 to 5 GHz and 8 to 12 GHz with S22 < ?10 dB have been obtained. Moreover, measured S12 and S21 with values of less than ?30 dB for both Ports have been realized. Additionally, the envelope correlation and radiation efficiency of the purposed antenna are less than 0.09 and more than 82%, respectively.  相似文献   

13.
In this article, a new modified cross‐shaped coupled cubical dielectric resonator antenna (DRA) has been investigated for dual‐band dual‐polarized applications. The linearly polarized (LP) fields in DRA has been generated by using a single slot in the ground plane and kept at either 45° (SL1) or ?45° (SL2) from the microstrip feed line. Combining these two slots (SL1 and SL2) in the modified ground plane, the proposed structure able to generate circularly polarized (CP) field in DRA. But the generated CP field is not enough to cover ISM 2400 band. To achieve CP in ISM 2400 band, an extra slot (SL3) to the existing slots and an extra strip (ST) in the circular ring feed line have been included. This modified final antenna arrangement has been able to produce LP (due to loading effect, ie, slot and DRA) and CP fields (orthogonal modes have been generated, ie, TE x111 and TE y111), simultaneously. The measured CP and LP, ?10 dB impedance bandwidths are 11.85% (2.38‐2.68 GHz) and 9.11% (3.25‐3.56 GHz) in combination with the 3‐dB axial ratio bandwidth of 4.11% (2.38‐2.48 GHz). The generated CP and LP fields are used for different wireless communication bands such as ISM 2400 and Wi‐MAX (3.3‐3.7 GHz) bands.  相似文献   

14.
The design and performance of a wide band active GaAs IC 180° differential phase shifter are presented. A two-stage GaAs IC was developed containing a microwave differential amplifier and a matched common-gate input. The active phase shifter achieved a 10° phase unbalance and an isolation at the output ports of better than 10 dB in the 1-10-GHz band. A large percentage of the GaAs chip contains active devices thereby providing a very large operating bandwidth and a reduced surface area. This active phase shifter presents an interesting alternative to the passive rat-race or an equivalent coupler for radio mobile communications. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
A high‐isolation dual‐polarized quad‐patch antenna fed by stacked substrate integrated waveguide (SIW) that is suitable for millimeter‐wave band is proposed in this paper. The antenna consists of a quad‐patch radiator, a two‐layer SIW feeding structure and two feeding ports for horizontal and vertical polarization. The two‐layer stacked SIW feeding structure achieves the high isolation between the two feeding ports (|S21| ≤ ?45 dB). Based on the proposed element, a 1 × 4 antenna array with a simple series‐fed network is also designed and investigated. A prototype working at the frequency band from 38 to 40 GHz is fabricated and tested. The results indicate that the proposed antenna has good radiation performance at 38 GHz that covers future 5G applications.  相似文献   

16.
In this article, an electrically coupled dual semicylindrical dielectric resonator antenna (SC‐DRA) is presented and discussed for wideband applications. The two SC‐DRAs are placed in an inverted arrangement and fed by a coaxial probe to excite the fundamental mode TM 11δ and higher order mode TM 21δ. In the proposed design, wideband performance is obtained by combining the fundamental and higher order mode. Proposed wideband antenna is showing simulated and measured input impedance bandwidth (|S11| ≤ ?10 dB) of 57.94% (3.8‐6.9 GHz) and 64.4% (3.38‐6.6 GHz), respectively. The far field radiation patterns are found to be consistent and 3‐dB beamwidth of 49° and 30° has been achieved at 4.11 and 6.48 GHz, respectively within the working band. This design attains an average gain of 5.65 dBi and radiation efficiency of 97%, respectively.  相似文献   

17.
In this article, a VO2‐based tunable omnidirectional circularly polarized (CP) antenna is designed. The proposed antenna combines copper and metamaterial VO2. By utilizing the characteristics of insulator‐metal phase transition of VO2, we can change the length of the resonant branches to achieve tunable working bandwidth. The proposed antenna is composed of a modified floor loaded with VO2 and copper resonant branches, a top patch with slits, and 14 shorting vias connecting the top path and bottom floor. Different from the traditional electric controlled antennas, antennas based on metamaterial VO2 do not need to design complicated circuit structures and can be easily tailored by the external temperature (T). The simulated results illustrate that when T ≥ 68°C (state I), the proposed antenna has a 10‐dB impedance bandwidth of 15.9% (2.09‐2.45 GHz), and a 3‐dB axial ratio (AR) bandwidth of 23.4% (2.04‐2.58 GHz). When T < 68°C (state II), it has a bandwidth of 6.5% (2.38‐2.54 GHz) with S11 below ?10 dB, and a bandwidth of 19.9% (2.39‐2.92 GHz) with AR below 3 dB.  相似文献   

18.
Two novel wideband bandpass filtering balun power dividers using modified Schiffman phase shifter are proposed in this article. Two types of wideband Wilkinson power dividers are adopted, respectively, in the two structures for wide passband. The Schiffman phase shifters are used in the structures for realizing 180° phase shift between output ports modified by connecting each of them with a short‐ended stub for weak coupling coefficient. In addition, two transmission zeros are realized by an open‐ended stub connected in parallel at the input port to realize the filtering characteristic. To verify the proposed structures, two wideband bandpass filtering balun power dividers (εr = 3.66,h = 0.762 mm, tanδ = 0.004) centering at 2GHz are designed and fabricated. The simulated and measured results are discussed.  相似文献   

19.
A single‐fed circularly polarized square shaped wide slot antenna with modified ground plane and microstrip feed has been presented. The field in the slot is perturbed by introducing an antipodal strips section attached with a microstrip line to produce circular polarization in a wide band of frequencies. The antipodal strip section consists of a group of four strips of unequal length and separation. The presence of asymmetric perturbations in the slot is mainly responsible for exciting two orthogonal modes in the slot having equal magnitude and 90° phase difference which results in circular polarization. A wide bandwidth of 3.3 GHz (4.4 GHz‐7.7 GHz) has been achieved for an axial ratio value AR < 3 dB with the minimum axial ratio value being 0.3 dB. The impedance bandwidth for |S11| < ?10 dB ranges from 4.3 GHz to 8 GHz, and therefore covers most of the C‐band communication systems. The antenna exhibits stable radiation patterns throughout the circular polarization bandwidth with a gain around 6 dBi in entire operational bandwidth. A prototype of antenna was fabricated and measured. The antenna has a planar size 0.40λ0 × 0.40λ0 and thickness of 0.02λ0 where λ0 is the wavelength in free space at the lowest frequency. With its compact size and low profile, the antenna is a favorable choice for WLAN (5.15‐5.85 GHz) and a wide variety of C‐band wireless applications.  相似文献   

20.
A compact (45 × 45 × 1.6 mm3) ultrawide‐band (UWB), multiple‐input multiple‐output (MIMO) design using microstrip line feeding is presented. The proposed design comprises four elliptical monopoles placed orthogonally on a cost‐effective FR‐4 substrate. In order to improve the impedance bandwidth and lessen the return loss of the MIMO antenna, defects in ground plane are created by etching symmetrical square slots and half‐rings. Moreover, a different method (of unsymmetrical H‐shaped slot with C‐shaped slot) was proposed into the patch to introduce dual‐band rejection performance from UWB at center frequency 5.5 GHz (covering lower WLAN as well as upper WLAN) and 7.5 GHz (X band). In addition, a stub is introduced at the edge of each defected ground structure to obtain isolation >–22 dB covering entire performing band from 2 to 16.8 GHz (where, S11 < –10 dB). The proposed design has miniaturized size, very low envelop correlation coefficient less than 0.1, stable gain (2‐4 dBi except for notch bands). Furthermore, various MIMO performance parameters are within their specifications, such as diversity gain (= 10 dB), total active reflection coefficient (<–5 dB, and channel capacity loss (<0.35 bits/s/Hz). The presented design is optimized using the HFSS software, and fabricated design is tested using vector network analyzer. The experimental results are in good agreement with the simulation results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号