首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
In this paper, we consider the problem of leader synchronization in systems with interacting agents in large networks while simultaneously satisfying energy‐related user‐defined distributed optimization criteria. But modeling in large networks is very difficult, and for that reason, we derive a model‐free formulation that is based on a separate distributed Q‐learning function for every agent. Every Q‐function is a parametrization of each agent's control, of the neighborhood controls, and of the neighborhood tracking error. It is also evident that none of the agents has any information on where the leader is connected to and from where she spreads the desired information. The proposed algorithm uses an integral reinforcement learning approach with a separate distributed actor/critic network for each agent: a critic approximator to approximate each value function and an actor approximator to approximate each optimal control law. The derived tuning laws for each actor and critic approximators are designed appropriately by using gradient descent laws. We provide rigorous stability and convergence proofs to show that the closed‐loop system has an asymptotically stable equilibrium point and that the control policies form a graphical Nash equilibrium. We demonstrate the effectiveness of the proposed method on a network consisting of 10 agents. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
    
We consider the output feedback event‐triggered control of an off‐grid voltage source inverter (VSI) with unknown inductance‐capacitance (L ? C) filter dynamics and connected load in the presence of an input disturbance acting at the inverter. Due to uncertain dynamics and unmodeled parameters in the L ? C filter connected to the VSI, we use an adaptive observer to reconstruct the system's states by measuring only the voltage at the output. The control mechanism is constructed based on an impulsive actor/critic framework that approximates the cost, the event‐triggered controller, and the worst case disturbance and generates the desired AC output with the least energy dissipation. We provide rigorous stability proofs and illustrate the applicability of our results through a simulation example.  相似文献   

3.
    
This article presents a novel actor‐critic‐barrier structure for the multiplayer safety‐critical systems. Non‐zero‐sum (NZS) games with full‐state constraints are first transformed into unconstrained NZS games using a barrier function. The barrier function is capable of dealing with both symmetric and asymmetric constraints on the state. It is shown that the Nash equilibrium of the unconstrained NZS guarantees to stabilize the original multiplayer system. The barrier function is combined with an actor‐critic structure to learn the Nash equilibrium solution in an online fashion. It is shown that integrating the barrier function with the actor‐critic structure guarantees that the constraints will not be violated during learning. Boundedness and stability of the closed‐loop signals are analyzed. The efficacy of the presented approach is finally demonstrated by using a simulation example.  相似文献   

4.
    
Path planning can guarantee that agents reach their goals without colliding with obstacles and other agents in an optimal way and it is a very important component in the research of crowd simulation. In this article, we propose a novel path planning approach for multiple agents which combines soft actor critic (SAC) algorithm and curriculum learning to solve the problems of single policy, slow convergence of the policy in an unknown environment with sparse rewards. The path planning task is set as lessons from easy to difficult, and the neural network of the SAC algorithm is arranged to learn in sequence, and finally the neural network can be fully competent for the path planning task. We also stack the state information to address the problems caused by limited observation for policy learning, and design a comprehensive reward function to make agents reach their goals successfully and avoid collisions with static obstacles and other agents. The experimental results demonstrate that our approach can plan smooth and natural paths for multiple agents, and furthermore, our model has a certain generalization ability and a better adaptability to the changes in a dynamic environment.  相似文献   

5.
    
This paper investigates the problem of event‐based linear control of systems subject to input saturation. First, for discrete‐time systems with neutrally stable or double‐integrator dynamics, novel event‐triggered control algorithms with non‐quadratic event‐triggering conditions are proposed to achieve global stabilization. Compared with the quadratic event‐triggering conditions, the non‐quadratic ones can further reduce unnecessary control updates for the input‐saturated systems. Furthermore, for continuous‐time systems with neutrally stable or double‐integrator dynamics, because an inherent lower bound of the inter‐event time does not exist for systems subject to input saturation, novel event‐triggered control algorithms with an appropriately selected minimum inter‐event time are proposed to achieve global stabilization. Finally, numerical examples are provided to illustrate the theoretical results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
    
This paper focuses on the analysis and the design of event‐triggering scheme for discrete‐time systems. Both static event‐triggering scheme (SETS) and adaptive event‐triggering scheme (AETS) are presented for discrete‐time nonlinear and linear systems. What makes AETS different from SETS is that an auxiliary dynamic variable satisfying a certain difference equation is incorporated into the event‐triggering condition. The sufficient conditions of asymptotic stability of the closed‐loop event‐triggered control systems under both two triggering schemes are given. Especially, for the linear systems case, the minimum time between two consecutive control updates is discussed. Also, the quantitative relation among the system parameters, the preselected triggering parameters in AETS, and a quadratic performance index are established. Finally, the effectiveness and respective advantage of the proposed event‐triggering schemes are illustrated on a practical example. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
    
In this paper, we develop a novel event‐triggered robust control strategy for continuous‐time nonlinear systems with unmatched uncertainties. First, we build a relationship to show that the event‐triggered robust control can be obtained by solving an event‐triggered nonlinear optimal control problem of the auxiliary system. Then, within the framework of reinforcement learning, we propose an adaptive critic approach to solve the event‐triggered nonlinear optimal control problem. Unlike typical actor‐critic dual approximators used in reinforcement learning, we employ a unique critic approximator to derive the solution of the event‐triggered Hamilton‐Jacobi‐Bellman equation arising in the nonlinear optimal control problem. The critic approximator is updated via the gradient descent method, and the persistence of excitation condition is necessary. Meanwhile, under a newly proposed event‐triggering condition, we prove that the developed critic approximator update rule guarantees all signals in the auxiliary closed‐loop system to be uniformly ultimately bounded. Moreover, we demonstrate that the obtained event‐triggered optimal control can ensure the original system to be stable in the sense of uniform ultimate boundedness. Finally, a F‐16 aircraft plant and a nonlinear system are provided to validate the present event‐triggered robust control scheme.  相似文献   

8.
    
In the theory of event‐based optimization (EBO), the decision making is triggered by events, which is different from the traditional state‐based control in Markov decision processes (MDP). In this paper, we propose a policy gradient approach of EBO. First, an equation of performance gradient in the event‐based policy space is derived based on a fundamental quantity called Q‐factors of EBO. With the performance gradient, we can find the local optimum of EBO using the gradient‐based algorithm. Compared to the policy iteration approach in EBO, this policy gradient approach does not require restrictive conditions and it has a wider application scenario. The policy gradient approach is further implemented based on the online estimation of Q‐factors. This approach does not require the prior information about the system parameters, such as the transition probability. Finally, we use an EBO model to formulate the admission control problem and demonstrate the main idea of this paper. Such online algorithm provides an effective implementation of the EBO theory in practice.  相似文献   

9.
    
We propose a novel event‐triggered optimal tracking control algorithm for nonlinear systems with an infinite horizon discounted cost. The problem is formulated by appropriately augmenting the system and the reference dynamics and then using ideas from reinforcement learning to provide a solution. Namely, a critic network is used to estimate the optimal cost while an actor network is used to approximate the optimal event‐triggered controller. Because the actor network updates only when an event occurs, we shall use a zero‐order hold along with appropriate tuning laws to encounter for this behavior. Because we have dynamics that evolve in continuous and discrete time, we write the closed‐loop system as an impulsive model and prove asymptotic stability of the equilibrium point and Zeno behavior exclusion. Simulation results of a helicopter, a one‐link rigid robot under gravitation field, and a controlled Van‐der‐Pol oscillator are presented to show the efficacy of the proposed approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
    
This paper studies a Lyapunov‐based small‐gain approach on design of triggering conditions in event‐triggered control systems. The event‐triggered control closed‐loop system is formulated as a hybrid system model. Firstly, by viewing the event‐triggered control closed‐loop system as a feedback connection of two smaller hybrid subsystems, the Lyapunov‐based small‐gain theorems for hybrid systems are applied to design triggering conditions. Then, a new class of triggering condition, the safe, adjustable‐type triggering condition, is proposed to tune the parameters of triggering conditions by practical regulations. This is conducive to break the restriction of the conservation of theoretical results and improve the practicability of event‐triggered control strategy. Finally, a numerical example is given to illustrate the efficiency and the feasibility of the proposed results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
    
This paper aims to stabilize a scalar continuous‐time linear system that transmits its feedback information through a digital communication network. The finite bit rate of the feedback network plays a critical role in the input‐to‐state stability of that system. Stabilizing bit rate conditions depend on not only the system matrix but also the uncertainty of the system matrix and the unknown clock offset between the transmitter (sensor) and the receiver (controller). Compared with the current literature, this paper can handle the system matrix uncertainty and clock offset through implementing an event‐triggered sampling strategy and derive stabilizing conditions that require lower bit rates than those of periodic sampling strategies. Such bit rate saving mainly comes from the fact that our event‐triggered strategy can extract state information from the receive time instants of feedback packets without any extra communication cost. Simulations are done to confirm the effectiveness of the obtained stabilizing bit rate conditions.  相似文献   

12.
    
This paper investigates the consensus issue of multiagent systems with data transmission time delay. The state measurement of each local agent is directly sent to a private event‐trigger and further authorized to be broadcasted to its neighbors via communication network only when the threshold of the event‐trigger is violated. Since the controller always receives discrete‐time neighbor information with data transmission time delay, a predictor is employed to estimate the continuous‐time neighbor state. Based on the estimated state, a novel consensus protocol is mainly proposed for achieving the bounded consensus of the multiagent systems. By the proposed method, the asynchronous neighbor information is allowed and the margin of data transmission time delay is also given. Furthermore, it has been proved that the unwanted Zeno phenomena can be naturally excluded. Numerical example is provided to demonstrate the effectiveness of the proposed method.  相似文献   

13.
    
In this paper, the event‐triggered‐based state estimation problem is investigated for a class of nonlinear networked control systems subjected to external disturbances. A novel event‐triggered extended state observer (ESO) is utilized to estimate the so‐called total disturbance, and an output predictor is adopted for the proposed ESO between two consecutive transmission instants. It is also worth pointing out that, in the newly proposed ESO, an event‐triggered mechanism is adopted to update the measurement signal so as to save the communication resource. The sufficient conditions are provided such that the estimation error dynamics is exponentially ultimately bounded. Furthermore, it is proven that the Zeno behavior does not exist for the event‐triggering rules. A number of numerical simulations are conducted to verify the validity of the theoretical results.  相似文献   

14.
本文针对多房间的移动机器人内墙作业的路径规划任务,提出一种两阶段路径规划方法.第1阶段针对沿墙作业过程中环境存在灰尘或雾气造成的传感器失效问题,以及房间多出口时路径规划不完整问题,我们提出起点自动选择沿墙路径规划方法,基于栅格地图离线生成沿墙规划路径.第2阶段,针对点到点路径规划过程中的动态避障问题,我们提出一种基于PSAC (prioritized experience replay soft actor critic)算法的点到点路径规划方法,在软行动者-评论家(soft actor critic, SAC)的中引入优先级经验回放策略,实现机器人的动态避障.实验部分设计了沿墙路径规划对比实验和动态避障的对比实验,验证本文所提出的方法在室内沿墙路径规划和点到点路径规划的有效性.  相似文献   

15.
针对具有周期拒绝服务(DoS)攻击的网络化系统,设计一种基于观测器的具有动态事件触发策略的控制器.首先,通过DoS攻击对网络化系统的影响建立了DoS攻击模型,采用切换系统的方法,将具有DoS攻击的网络化系统分为DoS攻击活跃子系统和DoS攻击休眠子系统.对不可测的系统状态设计状态观测器,通过在静态事件触发中引入一个内部...  相似文献   

16.
    
This paper investigates the problem of event‐based synchronization of linear dynamical networks subject to input saturation. The asynchronous neighboring information transmission is triggered by distributed events. The sampled control technique is utilized to exclude both the internal Zeno behavior of each agent and the network Zeno behavior attributed to neighboring agents. Allowing the input saturation to be attained, an event‐based global synchronization algorithm is proposed for multiagent networks with neutrally stable dynamics. For general linear networks, an event‐triggered control protocol is designed using the modified algebraic Riccati equation, with a low‐gain cooperative control law proposed to achieve semiglobal synchronization. A numerical example is presented to illustrate the theoretical results.  相似文献   

17.
    
This article is concerned with the quasi‐time‐dependent asynchronous filter design problem for a class of discrete‐time switched systems via the event‐triggering mechanism. Applying the quasi‐time‐dependent Lyapunov functions and the mode‐dependent average dwell time technique, an asynchronous filter is designed with a weighted performance index; the filter parameter matrices are quasi‐time‐dependent in each event‐triggering‐dependent sampling interval; both cases (Case 1: no more than one switching, Case 2: multiple switchings) are taken into account in this sampling interval, by which the assumption, that the maximal asynchronous period is not larger than the minimal dwell time, is relaxed in this article. Simulation examples are given to show the less conservatism and effectiveness of the proposed results.  相似文献   

18.
    
In this article, we focus on developing a neural‐network‐based critic learning strategy toward robust dynamic stabilization for a class of uncertain nonlinear systems. A type of general uncertainties involved both in the internal dynamics and in the input matrix is considered. An auxiliary system with actual action and auxiliary signal is constructed after dynamics decomposition and combination for the original plant. The reasonability of the control problem transformation from robust stabilization to optimal feedback design is also provided theoretically. After that, the adaptive critic learning method based on a neural network is established to derive the approximate optimal solution of the transformed control problem. The critic weight can be initialized to a zero vector, which apparently facilitates the learning process. Numerical simulation is finally presented to illustrate the effectiveness of the critic learning approach for neural robust stabilization.  相似文献   

19.
    
This paper investigates stability of nonlinear control systems under intermittent information. Following recent results in the literature, we replace the traditional periodic paradigm, where the up‐to‐date information is transmitted and control laws are executed in a periodic fashion, with the event‐triggered paradigm. Building on the small gain theorem, we develop input–output triggered control algorithms yielding stable closed‐loop systems. In other words, based on the currently available (but outdated) measurements of the outputs and external inputs of a plant, a mechanism triggering when to obtain new measurements and update the control inputs is provided. Depending on the noise in the environment, the developed algorithm yields stable, asymptotically stable, and ‐stable (with bias) closed‐loop systems. Control loops are modeled as interconnections of hybrid systems for which novel results on ‐stability are presented. The prediction of a triggering event is achieved by employing ‐gains over a finite horizon. By resorting to convex programming, a method to compute ‐gains over a finite horizon is devised. Finally, our approach is successfully applied to a trajectory tracking problem for unicycles. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
    
This paper studies the event‐triggered containment control problem for dynamical multiagent networks of general MIMO linear agents. An event‐triggered containment control strategy is provided, which consists of a control law based on a relative‐state feedback and a distributed triggering rule based on both the relative‐state information and a time‐dependent threshold function. Compared to the previous related works, our main contribution is that the triggering rule depends only on local information of communication networks. It is proved that under the proposed event‐based controller, the containment errors are uniformly ultimately bounded and the Zeno behavior can be excluded. Moreover, when the derivation constant in the threshold function is equal to zero, the containment control problem can be solved. Then, the results are extended to the event‐triggered observer‐based containment controller design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号