首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For a family of nonlinear systems with parametric uncertainty in both state and output equations, we prove that global adaptive regulation is still achievable by output feedback. The bounds of the time‐varying parameter at the system output are unknown, and the class of nonlinear systems is assumed to be dominated by a triangular system that satisfies a linear growth condition with a polynomial output‐dependent rate. The result presented in this article has incorporated and generalized recent advances on robust output feedback control of nonlinear systems with output uncertainty, all of them are required to satisfy a linear growth condition with a constant rate. A nonidentifier‐based universal controller is proposed with a high gain estimator, rather than observer, whose gain is updated in a dynamic fashion. It is shown that a single dynamic gain is sufficient for dealing with the unknown parameter at the system output and the system parametric uncertainty simultaneously.  相似文献   

2.
For a family of uncertain nonlinear systems dominated by a triangular system that satisfies linear growth condition with an output dependent growth rate, we prove that global robust stabilization can be achieved by smooth output feedback. This conclusion has incorporated and generalized the recent output feedback stabilization results, for instance, the work (IEEE Trans. Automat. Control 2002; 47 :2068–2073) where the same conclusion was already shown to be true for planar systems, and the work (Proceedings of the 42nd IEEE, CDC, 2003; 1544–1549) where the growth rate is required to be a polynomial function of the system output. There are two key ingredients in the present contribution. One of them is the introduction of a rescaling transformation with a dynamic factor that is tuned on‐line through a Riccati‐like differential equation, which turns out to be extremely effective in dealing with the system uncertainty. The other one is the development of a recursive observer design algorithm making it possible to assign the robust observer gains in a step‐by‐step fashion. Both a smooth state feedback controller and a robust observer are explicitly constructed for the rescaled system using only the knowledge of the bounding system. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
This article addresses the problem of global output feedback stabilization for a class of time‐varying delay nonlinear systems with polynomial growth rate. The systems under investigation possess two remarkable features: the output is perturbed by an unknown sensitivity function that is not differentiable but continuous, and the nonlinearities are bounded by a polynomial function of the output multiplied by unmeasurable state variables. The new full‐order observer is established by introducing a dynamic gain and filtering unknown nonlinearities and time‐varying delay. With the help of the transformation skill and the reasonable combination of several systems, this article proposes a linear output feedback controller with the dynamic gain and completes the performance analysis based on the construction of two integral Lyapunov functions. Finally, a simulation example is presented to demonstrate the effectiveness of control strategy.  相似文献   

4.
This paper considers a class of uncertain nonlinear feedforward systems with unknown constant growth rate, output polynomial function growth rate and system input function growth rate. Under the most general growth rate condition, only one dynamic gain is used to compensate simultaneously these three types of growth rates, an output feedback controller is constructed to guarantee the boundedness of closed-loop system states and the convergence of original system states.  相似文献   

5.
Constructive control techniques have been proposed for controlling strict feedback (lower triangular form) stochastic nonlinear systems with a time‐varying time delay in the state. The uncertain nonlinearities are assumed to be bounded by polynomial functions of the outputs multiplied by unmeasured states or delayed states. The delay‐independent output feedback controller making the closed‐loop system globally asymptotically stable is explicitly constructed by using a linear dynamic high‐gain observer in combination with a linear dynamic high‐gain controller. A simulation example is given to demonstrate the effectiveness of the proposed design procedure. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
This paper is concerned with the global output feedback stabilization for a class of nonholonomic systems with unknown parameter, polynomial‐of‐output, and unmeasurable states dependent growth. A dynamic high‐gain observer is first designed to reconstruct the unmeasurable system states and, in addition, to compensate the serious parameter unknowns in nonlinear drifts. Then, we design a compact adaptive controller without invoking the backstepping technique, which reduces the complexity of controller. Additionally, a switching control strategy is employed to overcome the smooth feedback obstacle associated with nonholonomic systems. It is shown that the proposed control laws guarantee that all closed‐loop system states are globally bounded and ultimately converge to zero. The simulation results demonstrate the effectiveness of the proposed control strategy.  相似文献   

7.
In this paper, adaptive output feedback control for a class of nonlinear systems with quantized input is investigated. The nonlinearities of the nonlinear systems under consideration are assumed to satisfy linear growth condition on the unmeasured states multiplied by unknown growth rate and output polynomial function. By developing a dynamic high‐gain observer, a linear‐like output feedback controller is constructed, with which it is proved that the output of the quantized control system can be steered to within an arbitrarily small residual set while keeping all the other closed loop states bounded. In particular, if the growth rate is known, it is proved that all the states of the system can be steered to within an arbitrarily small neighborhood of the origin. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
This paper investigates the global practical tracking via adaptive output‐feedback for a class of uncertain nonlinear systems. Essentially different from the closely related literature, the system under investigation possesses unknown time‐varying control coefficients and a polynomial‐of‐output growth rate, and meanwhile, the system nonlinearities and the reference signal allow serious unknowns. For this, an adaptive observer is designed to reconstruct the system unmeasured states, where a new dynamic gain is introduced to compensate the serious unknowns in the system nonlinearities and the reference signal. Based on this and by backstepping technique, an adaptive output‐feedback controller is successfully designed, such that all the states of the closed‐loop system are bounded, and the tracking error will be prescribed sufficiently small after a finite time. A numerical simulation is provided to demonstrate the effectiveness of the proposed method.  相似文献   

9.
This paper investigates the problem of adaptive stabilization by output feedback for a class of uncertain nonlinear systems. The distinguishing feature of such a class of systems is the presence of uncertain control coefficient and unmeasured states dependent growth with growth rate of polynomial‐of‐output multiplying an unknown constant. First, new high‐gain K‐filters with two dynamic gains are introduced, and an appropriate state observer is constructed based on the K‐filters. Then, motivated by the universal control idea, the backstepping scheme is successfully developed for the adaptive output feedback control design. By appropriate choice of the design parameters, the global stability of the closed‐loop system can be guaranteed. Finally, numerical simulations are provided to illustrate the correctness of the theoretical results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, the problem of global state regulation by output feedback is investigated for a class of uncertain nonlinear systems satisfying some relaxed upper‐triangular‐type condition. Using a linear dynamic gain observer with two dynamic gains and introducing two appropriate change of coordinates, we give a constructive design procedure for the linear‐like output feedback stabilizing controller. It is proved that the proposed controller globally regulates all the states of the uncertain system and maintains global boundedness of the closed‐loop system. An example is provided to demonstrate the effectiveness of the proposed design scheme. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, the problem of output feedback tracking control is investigated for lower‐triangular nonlinear time‐delay systems in the presence of asymmetric input saturation. A novel design program based on a dynamic high gain design approach is proposed to construct an output feedback tracking controller. The innovation here is that the problem of constructing tracking controller can be transformed into the problem of constructing two dynamic equations, with one being utilized to deal with the nonlinear terms and the other one being applied to analyze the influence of asymmetric input saturation. It is proved by an appropriate Lyapunov‐Krasovskii functional that the proposed tracking controller subject to saturation can ensure that all the signals of the closed‐loop system are globally bounded and the tracking error is prescribed sufficiently small when time is long enough. A practical example is given to illustrate the effectiveness of the proposed method.  相似文献   

12.
A robust dynamic output feedback controller synthesis algorithm considering H/H2 performance and regional pole placement is addressed for a nonlinear system with parameter uncertainties and external disturbance. First, the formulation of a gain‐scheduled mixed‐objective robust dynamic output feedback controller for continuous‐time polytopic linear parameter varying (LPV) systems is presented. To reduce conservativeness, some auxiliary slack variables and parameter‐dependent Lyapunov functions are employed in addition to well‐established performance conditions. Then, sufficient conditions for the desired gain‐scheduled mixed‐objective robust dynamic output feedback controllers are cast into an efficiently tractable finite‐dimensional convex optimization problem in terms of linear matrix inequalities (LMIs). Finally, numerical simulation shows the validity of the proposed controller, which has good stability, strong robustness, satisfied disturbance attenuation ability, and smooth dynamic properties.  相似文献   

13.
In this paper, we consider the problem of global output feedback stabilization for a class of nonlinear systems whose nonlinearities are assumed to be bounded by both low‐order and high‐order nonlinearities multiplied by a polynomial‐type output‐dependent growth rate. Instead of the previously proposed dual observer, based on the homogeneous domination approach, a new reduced‐order observer is constructed, which greatly simplifies the closed‐loop controller and is able to cover a more general class of nonlinear systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
This paper considers the problem of almost disturbance decoupling (ADD) via sampled‐data output feedback control for a class of uncertain nonlinear systems subject to time‐delays. Based on output feedback domination approach, a sampled‐data output feedback controller is designed to globally stabilize the system under a lower‐triangular linear growth condition. Gronwall‐Bellman‐like inequality and inductive method are introduced to estimate the state growth in the presence of time‐delays, uncertain nonlinearities and unknown disturbances. The proposed controller can attenuate the influence of disturbances on the output to an arbitrary degree in the L2 gain sense. Finally, simulation results show the effectiveness of the control method.  相似文献   

15.
We investigate the problem of robust adaptive tracking by output feedback for a class of uncertain nonlinear systems. Based on the high‐gain scaling technique and a new adaptive law, a linear‐like output feedback controller is constructed. Only one dynamic gain is designed, which makes the controller easier to implement. Furthermore, by modifying the update law, the adaptive controller is robust to bounded external disturbance and is able to guarantee the convergence of the output tracking error to an arbitrarily small residual set. A numerical example is used to illustrate the effectiveness of the proposed method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
This paper is devoted to developing a novel approach to deal with constrained continuous‐time nonlinear systems in the form of Takagi‐Sugeno fuzzy models. Here, the disturbed systems are subject to both input and state constraints. The one‐step design method is used to simultaneously synthesize the dynamic output feedback controller and its anti‐windup strategy. A parameter‐dependent version of the generalized sector condition is used together with Lyapunov stability theory to derive linear matrix inequality design conditions. Based on this result and for different design specifications, the synthesis of an anti‐windup based dynamic output feedback controller is expressed on the form of convex optimization problems. A physically motivated example is given to illustrate the effectiveness of the proposed method.  相似文献   

17.
This paper investigates the problem of global control for a class of nonlinear systems via output feedback. The system nonlinearities satisfy the homogenous growth condition with unknown growth rate. First, a homogenous observer is constructed for estimating the system state. Then, two novel dynamic gains are presented to deal with the unknown growth rate. Subsequently, by adding a power integrator technique, a dynamic output feedback controller is designed to guarantee that all the signals of the closed‐loop system are bounded and the system states globally converge to origin. Finally, an example is provided to illustrate the validity of the proposed control scheme.  相似文献   

18.
The dynamic output feedback control problem with output quantizer is investigated for a class of nonlinear uncertain Takagi‐Sugeno (T‐S) fuzzy systems with multiple time‐varying input delays and unmatched disturbances. The T‐S fuzzy model is employed to approximate the nonlinear uncertain system, and the output space is partitioned into operating regions and interpolation regions based on the structural information in the fuzzy rules. The output quantizer is introduced for the controller design, and the dynamic output feedback controller with output quantizer is constructed based on the T‐S fuzzy model. Stability conditions in the form of linear matrix inequalities are derived by introducing the S‐procedure, such that the closed‐loop system is stable and the solutions converge to a ball. The control design conditions are relaxed and design flexibility is enhanced because of the developed controller. By introducing the output‐space partition method and S‐procedure, the unmatched regions between the system plant and the controller caused by the quantization errors can be solved in the control design. Finally, simulations are given to verify the effectiveness of the proposed method.  相似文献   

19.
The problem of global robust stabilization is studied by both continuous‐time and sampled‐data output feedback for a family of nonminimum‐phase nonlinear systems with uncertainty. The uncertain nonlinear system considered in this paper has an interconnect structure consisting of a driving system and a possibly unstable zero dynamics with uncertainty, ie, the uncertain driven system. Under a linear growth condition on the uncertain zero dynamics and a Lipschitz condition on the driving system, we show that it is possible to globally robustly stabilize the family of uncertain nonminimum‐phase systems by a single continuous‐time or a sampled‐data output feedback controller. The sampled‐data output feedback controller is designed by using the emulated versions of a continuous‐time observer and a state feedback controller, ie, by holding the input/output signals constant over each sampling interval. The design of either continuous‐time or sampled‐data output compensator uses only the information of the nominal system of the uncertain controlled plant. In the case of sampled‐data control, global robust stability of the hybrid closed‐loop system with uncertainty is established by means of a feedback domination method together with the robustness of the nominal closed‐loop system if the sampling time is small enough.  相似文献   

20.
This paper considers the global finite‐time output‐feedback stabilization for a class of uncertain nonlinear systems. Comparing with the existing related literature, two essential obstacles exist: On the one hand, the systems in question allow serious parametric unknowns and serious time variations coupling to the unmeasurable states, which is reflected in that the systems have the unmeasurable states dependent growth with the rate being an unknown constant multiplying a known continuous function of time. On the other hand, the systems possess remarkably inherent nonlinearities, whose growth allows to be not only low‐order but especially high‐order with respect to the unmeasurable states. To effectively cope with these obstacles, we established a time‐varying output‐feedback strategy to achieve the finite‐time stabilization for the systems under investigation. First, a time‐varying state‐feedback controller is constructed by adding an integrator method, and by homogeneous domination approach, a time‐varying reduced‐order observer is designed to precisely rebuild the unmeasurable states. Then, by certainty equivalence principle, a desired time‐varying output‐feedback controller is constructed for the systems. It is shown that, as long as the involved time‐varying gain is chosen fast enough to overtake the serious parametric unknowns and the serious time variations, the output‐feedback controller renders that the closed‐loop system states converge to zero in finite time. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号