首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fuzzy torque distribution control for a parallel hybrid vehicle   总被引:1,自引:0,他引:1  
A fuzzy torque distribution controller for energy management (and emission control) of a parallel hybrid electric vehicle is proposed. The proposed controller is implemented in terms of a hierarchical architecture which incorporates the mode of operation of the vehicle as well as empirical knowledge of energy flow in each mode. Moreover, the rule set for each mode of operation of the vehicle is designed in view of an overall energy management strategy that ranges from maximal emphasis on battery charge sustenance to complete reliance on the electrical power source. The proposed control system is evaluated via computational simulations under the FTP75 urban drive cycle. Simulation results reveal that the proposed fuzzy torque distribution strategy is effective over the entire operating range of the vehicle in terms of performance, fuel economy and emissions.  相似文献   

2.
Energy optimization management can make fuel cell truck (FCT) power system more efficient, so as to improve vehicle fuel economy. When the structure of power source system and the torque distribution strategy are determined, the essence is to find the reasonable distribution of electric power between the fuel cell and other energy sources. The paper simulates the assistance of the intelligent transport system (ITS) and carries out the eco-velocity planning using the traffic signal light. On this basis, in order to further improve the energy efficiency of FCT, a model predictive control (MPC)-based energy source optimization management strategy is innovatively developed, which uses Dijkstra algorithm to achieve the minimization of equivalent hydrogen consumption. Under the scenarios of signalized intersections, based on the planned eco-velocity, the off-line simulation results show that the proposed MPC-based energy source management strategy (ESMS) can reduce hydrogen consumption of fuel cell up to 7\% compared with the existing rule-based ESMS. Finally, the Hardware-in-the-Loop (HiL) simulation test is carried out to verify the effectiveness and real-time performance of the proposed MPC-based energy source optimization management strategy for the FCT based on eco-velocity planning with the assistance of traffic light information.  相似文献   

3.
Hybrid generation systems produce electric energy from a wide variety of energy sources, including renewable sources. A hybrid system based on renewable sources usually consists of two or more renewable energy sources with the possibility of including storage units so as to enhance the reliability of the system. The hybrid system requires an energy strategy that determines the operation point of each element of the system depending on multiple variables and subjected to the constraints inherent in this kind of systems. In addition, the system needs controllers to command each of these elements in order to reach the operation point established by the energy strategy. Here, we propose a control design via passivity-based control integrated with an energy management strategy for a hybrid generation system based on solar energy and coupled with the grid. The performance of the control methodology is extensively assessed through computer simulation using a comprehensive nonlinear model of the plant. The results show that the controlled system accomplishes the control tasks with good responses, working under very different atmospheric conditions and required load power.  相似文献   

4.
This paper focuses on describing a control strategy for a real tramway, in Zaragoza (Spain), whose current propulsion system is to be replaced by a hybrid system based on fuel cell (FC) as primary energy source and batteries and ultracapacitors (UCs) as secondary energy sources. Due to its slow dynamic response, the FC needs other energy sources support during the starts and accelerations, which are used as energy storage devices in order to harness the regenerative energy generated during brakings and decelerations. The proposed energy management system is based on an operation mode control, which generates the FC reference power, and cascade controls, which define the battery and UC reference powers in order to achieve a proper control of the DC bus voltage and states of charge (SOC) of battery and UC. The simulations, performed by using the real drive cycle of the tramway, show that the proposed hybrid system and energy management system are suitable for its application in this tramway.  相似文献   

5.
纯电动汽车储能系统需同时满足高功率密度与高能量密度的要求,但现阶段单一储能单元往 往难以同时具备这两种特点。将高能量密度的锂电池与高功率密度的超级电容进行合理搭配,形成复 合储能系统,是解决以上问题的一个有效方案。该文以宝马 I3 纯电动汽车作为目标车型,设计了锂电 池/超级电容复合储能系统,并制定了一种基于规则的能量管理策略,综合考虑了外部工况要求、锂电 池与超级电容的荷电状态,自动规划工作模式,充分发挥各储能单元自身优势,在极端状况下可自动 启动保护模式;同时,基于快速控制原型的思想,设计搭建了以 dSPACE 为控制中心的复合储能系统 能量管理策略快速控制验证平台,搭配可编辑电力参数的外部电子负载设备,完成了能量管理策略的 半实物实验验证。实验结果表明,电动汽车锂电池/超级电容复合储能系统搭配合理的能量管理策略, 能够充分发挥锂电池的能量特性与超级电容的功率特性,更好地满足了现代纯电动汽车对续航里程与 动力性能的要求,同时可节约能源,在一定程度上起到延长储能系统使用周期的作用。  相似文献   

6.
节能环保的出行方式得到政府的大力推广, 其中燃料电池混合动力有轨电车由于可无网运行且节能环保而备受关注.为了改善燃料电池/超级电容/动力电池大功率有轨电车的燃料经济性与系统耐久性, 提出一种有轨电车能量管理策略(Energy management strategy, EMS)的多目标优化方法. 首先以氢燃料消耗量和能量源性能衰减率作为评价指标, 建立多目标成本函数. 由于两个指标很难在同一个等式中评价, 设计了基于状态机与非支配排序的能量管理Pareto多目标优化方法, 获得了有轨电车能量管理策略Pareto非劣解集, 并分析了能量管理策略的目标功率参数对性能指标的影响规律, 进而遴选出兼顾燃料经济性与系统耐久性的综合最优解. 结果表明, 与功率跟随策略和基于遗传算法优化策略相比, 该能量管理优化方法的燃料经济性分别提高了29.4 %和2.4 %.  相似文献   

7.
This study presents a complete advanced control structure aimed at the optimal and most efficient energy management for a Grid-Connected Hybrid Power plant. This control scheme is composed of process supervision and process control layers, and it is a possible technology to enable improvements in the energy consumption of industrial systems subject to constraints and process demands. The proposed structure consists of the combination of a Model-Based Predictive Controller, formulated within the Chance Constraints framework to deal with stochastic disturbances (renewable sources, as solar irradiance), an optimal finite-state machine decision system and the use of disturbance estimation techniques for the prediction of renewable sources. The predictive controller uses feedforward compensation of estimated future disturbances, obtained by the use of Nonlinear Auto-Regressive Neural Networks with time delays. The proposed controller aims to perform the management of which energy system to use and to decide where to store energy between multiple storage options. This has to be done while always maximizing the use of renewable energy and optimizing energy generation due to contract rules (maintain maximal economic profit). The proposed method is applied to a case study of energy generation in a sugar cane power plant, with non-dispatchable renewable sources (such as photovoltaic and wind power generation), as well as dispatchable sources (as biomass and biogas). This hybrid power system is subject to operational constraints, as to produce steam in different pressures, sustain internal demands and, imperiously, produce and maintain an amount of electric power throughout each month, defined by strict contract rules with a local Distribution Network Operator (DNO). This paper aims to justify the use of this novel approach to optimal energy generation in hybrid microgrids through simulation, illustrating the performance improvement for different cases.  相似文献   

8.
The development of intelligent connected technology has brought opportunities and challenges to the design of energy management strategies for hybrid electric vehicles. First, to achieve car-following in a connected environment while reducing vehicle fuel consumption, a power split hybrid electric vehicle was used as the research object, and a mathematical model including engine, motor, generator, battery and vehicle longitudinal dynamics is established. Second, with the goal of vehicle energy saving, a layered optimization framework for hybrid electric vehicles in a networked environment is proposed. The speed planning problem is established in the upper-level controller, and the optimized speed of the vehicle is obtained and input to the lower-level controller. Furthermore, after the lower-level controller reaches the optimized speed, it distributes the torque among the energy sources of the hybrid electric vehicle based on the equivalent consumption minimum strategy. The simulation results show that the proposed layered control framework can achieve good car-following performance and obtain good fuel economy.  相似文献   

9.
When designing very complex control strategy using hybrid technology, one usually faces the challenge of balancing effective realization of multi-control modeling with design simplicity. To better manage this difficulty we have used the agent paradigm as a simple and powerful bridge between asynchronous/distributed computation and Matlab environment. The proposed architecture has been used to design a complex hybrid control environment using multi-objective, fuzzy c-means, and genetic algorithms optimization to design hybrid control strategies suitable for the energy flows management on board of hybrid electric vehicles.  相似文献   

10.
This paper presents a model predictive control approach for the energy management problem of a power-split hybrid electric vehicle system. The model predictive control is suggested to optimally share the road load between the engine and the battery. By analyzing the configuration of the power-split hybrid electric vehicle system, we developed a simplified model for better implementation of model predictive control. The model predictive control problem is solved using numerical computation method: continuation and generalized minimum residual method. Computer simulation results showed that the fuel economy was better using the model predictive control approach than the ADVISOR rule-based approach in three cases. We conclude that the model predictive control approach is effective for the application of power-split hybrid electric vehicle systems energy management and has the potential for real-time implementation. The simplified modeling method of the power-split hybrid electric vehicle system configuration can be applied to other configurations of hybrid electric vehicle.  相似文献   

11.
An energy management strategy is proposed for a class of fuel cell/battery hybrid systems. In such hybrid systems, a fuel cell system is the main power source, and a lithium‐ion battery is the auxiliary power source. In order to manage the system power at the next moment in a reasonable way, a load current filter with bounded estimation errors is designed to estimate the load current. Then, a real‐time optimal energy management algorithm is proposed to optimize economy consumption of the hybrid system. By taking current change rate of the fuel cell and the state of charge into consideration and taking reasonable model simplifications, the optimization problem can be described as a quadratic programming problem. Then a general purpose solver is proposed to solve the quadratic programming problem based on the alternating direction method of multipliers. The efficiency of the proposed solver is much faster than computing interior point method or active set method. Simulation results in MATLAB/SIMULINK are carried out to validate the significant effectiveness and efficiency of the proposed management strategy.  相似文献   

12.
针对单模糊控制策略下再生制动能量不能得到充分回收,提出了一种并联式混合动力汽车的双模糊控制能量管理策略.分别设计了驱动和制动工况下相应的模糊控制器,简化了控制系统设计的复杂度.最后,在Matlab中利用Advisor软件对所设计的双模糊控制策略进行了仿真.结果表明,与电辅助控制策略和单模糊控制策略相比,所设计的双模糊控制能量管理策略,在有效提高燃油经济性和制动工作效率的同时,极大地降低了废气排放.  相似文献   

13.
针对混合动力电动汽车(HEV)氮氧化物( )排放的问题,提出了一种基于决策树CART算法的柴油混合动力能源管理策略。首先,提出了一种结合决策树与回归树的分类算法(Classification and Regression Tress,CART),针对类别和变量特征,从一个或多个预测变量中预测出个例的趋势变化关系;然后,通过控制发动机和电动机之间的扭矩分配,引入了额外的自由度以调整从纯燃料经济性情况到纯 限制情况的优化权衡;最后,采用基于软件在环路和硬件在环仿真的方法,从而根据动力系统配置了解系统性能,并调整所提出的能源管理策略。实验结果表明,提出的柴油混合动力能源管理策略中, 的减少对燃料消耗的影响,且可以通过选择最佳工作点和限制发动机动力来限制 排放的潜力。相比其他几种较新的同类方案,提出的方案在同等燃料消耗的情况下 排放量更小,在燃料消耗略有下降的情况下,可以显着降低 。  相似文献   

14.
混合储能系统兼具高功率密度和高能量密度,可有效提升电动汽车动力性能和续驶里程.围绕电动汽车混合储能系统拓扑结构和控制策略,本文首先对混合储能系统及其典型储能装置进行概述,并对混合储能系统技术难点进行分析.之后在分析隔离型双向DC/DC变换器和非隔离型双向DC/DC变换器拓扑结构、工作原理和基本特性的基础上,综述分析了被动、半主动和全主动3种混合储能系统的工作原理和优缺点.然后,重点分析了基于规则的控制策略、基于优化的控制策略和混合控制策略3大类混合储能系统控制策略的工作原理.最后对混合储能系统的发展趋势进行了展望.  相似文献   

15.
本文针对插电式混合动力汽车(plug-in hybrid electric vehicle,PHEV)这一典型混杂系统,提出了一种基于车速预测的混合逻辑动态(mixed logical dynamical,MLD)模型预测控制策略.首先,通过对发动机和电动机能量消耗模型进行线性化,建立双轴并联插电式混合动力城市公交车的动力传动系统数学模型;其次,运用模糊推理进行驾驶意图分析,提出基于驾驶意图识别和历史车速数据相结合的非线性自回归(nonlinear auto-regressive models,NAR)神经网络车速预测方法进行未来行驶工况预测.然后,以最小等效燃油消耗为目标建立PHEV的混合逻辑动态模型,运用预测控制思想对车速预测时域内最优电机转矩控制序列进行求解.最后,通过仿真实验验证了本文所提出控制策略在特定的循环工况下与电动助力策略相比,能够提高燃油经济性.  相似文献   

16.
This paper focuses on describing a control strategy for a real surface tramway powered by a hybrid system based on fuel cell and battery. This tramway, called Metro Centro, serves the centre of Seville, a city in Spain. Currently, it operates as catenary-powered tramway.The configuration and modeling of all principal components of the hybrid system are briefly described. The models, implemented in MATLAB-Simulink environment, have been designed from commercially available components. The implemented control is based on an equivalent consumption minimization strategy. It allows a suitable energy management of the hybrid system, minimizing the hydrogen consumption.  相似文献   

17.
There are many approaches addressing the problem of optimal energy management in hybrid electric vehicles; however, most of them optimise the control strategy for particular driving cycles. This paper takes into account that the driving cycle is not a priori known to obtain a near-optimal solution. The proposed method is based on analysing the power demands in a given receding horizon to estimate future driving conditions and minimise the fuel consumption while cancelling the expected battery energy consumption after a defined time horizon. Simulations show that the proposed method allows charge sustainability providing near-optimal results.  相似文献   

18.
With the help of traffic information of the connected environment, an energy management strategy (EMS) is proposed based on preceding vehicle speed prediction, host vehicle speed planning, and dynamic programming (DP) with PI correction to improve the fuel economy of connected hybrid electric vehicles (HEVs). A conditional linear Gaussian (CLG) model for estimating the future speed of the preceding vehicle is established and trained by utilizing historical data. Based on the predicted information of the preceding vehicle and traffic light status, the speed curve of the host vehicle can ensure that the vehicle follows safety and complies with traffic rules simultaneously as planned. The real-time power allocation is composed of offline optimization results of DP and the real-time PI correction items according to the actual operation of the engine. The effectiveness of the control strategy is verified by the simulation system of HEVs in the interconnected environment established by E-COSM 2021 on the MATLAB/Simulink and CarMaker platforms.  相似文献   

19.
对于混合动力汽车而言,节能减排是促使其发展的主要原因,而能量管理策略是节能减排的关键技术,因此针对并联混合动力汽车的能量管理策略展开研究;首先运用ADVISOR电动汽车仿真软件,选用某款并联混合动力车型,并使用标准ECE_ECDU和UDDS循环工况来评估整车燃油经济性和污染物排放效果;然后,采用门限参数优化的方法对控制策略进行优化;最后对比优化前后不同循环工况仿真结果中汽车的燃油经济性和排放性能的变化,并分析了优化后的策略对汽车性能的影响;研究表明,所提出的优化方法使汽车在ECE_ECDU和UDDS循环工况中的每百公里油耗分别降低了8.45%和10%,有害气体HC、CO和NOX含量分别减少了5.88%和5.8%、12.24%和11.54%、8.55%和7.51%,进一步验证了优化策略的有效性。  相似文献   

20.
In this paper, we propose a real-time energy-efficient anticipative driving control strategy for connected and automated hybrid electric vehicles (HEVs). Considering the inherent complexities brought about by the velocity profile optimization and energy management control, a hierarchical control architecture in the model predictive control (MPC) framework is developed for real-time implementation. In the higher level controller, a novel velocity optimization problem is proposed to realize safe and energy-efficient anticipative driving. The real-time control actions are derived through a computationally efficient algorithm. In the lower level controller, an explicit solution of the optimal torque split ratio and gear shift schedule is introduced for following the optimal velocity profile obtained from the higher level controller. The comparative simulation results demonstrate that the proposed strategy can achieve approximately 13% fuel consumption saving compared with a benchmark strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号