首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents an event‐triggered predictive control approach to stabilize a networked control system subject to network‐induced delays and packet dropouts, for which the states are not measurable. An observer‐based event generator is first designed according to the deviation between the state estimation at the current time and the one at the last trigger time. A predictive control scheme with a selector is then proposed to compensate the effect of network‐induced delays and packet dropouts. Sufficient conditions for stabilization of the networked control system are derived by solving linear matrix inequalities and the corresponding gains of the controller and the observer are obtained. It is shown that the event‐triggered implementation is able to realize reduction in communication and save bandwidth resources of feedback channel networks. A simulation example of an inverted pendulum model illustrates the efficacy of the proposed scheme.  相似文献   

2.
This paper addresses the consensus problem of nonlinear multi‐agent systems with unknown external disturbance. First, a distributed observer is proposed to estimate the state and unknown disturbance of each agent simultaneously. Then, a novel event‐triggered control scheme based on the agent state estimation and disturbance estimation is proposed. Unlike the existing strategies, our event‐triggered conditions depend on agent state estimation and disturbance estimation, which are more effective and practical. Under this observer and control strategy, some sufficient conditions are derived to ensure the consensus of the multi‐agent system with unknown external disturbance. Moreover, the Zeno‐behavior of triggering time sequences is also excluded. Finally, a simulation example is given to verify the theoretical analysis.  相似文献   

3.
This paper is concerned with security distributed state estimation for nonlinear networked systems against denial‐of‐service attacks. By taking the effects of resource constraints into consideration, an event‐triggered scheme and a quantization mechanism are employed to alleviate the burden of network. A mathematical model of distributed state estimation is constructed for nonlinear networked systems against denial‐of‐service attacks. Sufficient conditions ensuring the exponential stability of the estimation error systems are obtained by utilizing the Lyapunov stability theory. The explicit expressions of the designed state estimators are acquired in terms of the linear matrix inequalities. Finally, a numerical example is used to testify the feasibility of the proposed method.  相似文献   

4.
In this paper, we consider the recursive state estimation problem for a class of discrete‐time nonlinear systems with event‐triggered data transmission, norm‐bounded uncertainties, and multiple missing measurements. The phenomenon of event‐triggered communication mechanism occurs only when the specified event‐triggering condition is violated, which leads to a reduction in the number of excessive signal transmissions in a network. A sequence of independent Bernoulli random variables is employed to model the multiple measurements missing in the transmission. The norm‐bounded uncertainties that could be considered as external disturbances which lie in a bounded set. The purpose of the addressed filtering problem is to obtain an optimal robust recursive filter in the minimum‐variance sense such that with the simultaneous presence of event‐triggered data transmission, norm‐bounded uncertainties, and multiple missing measurements; the filtering error is minimized at each sampling time. By solving two Riccati‐like difference equations, the filter gain is calculated recursively. Based on the stochastic analysis theory, it is proved that the estimation error is bounded under certain conditions. Finally, two numerical examples are presented to demonstrate the effectiveness of the proposed algorithm. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
This article emphasizes the finite‐time state estimation problem for delayed complex dynamical networks with random parameters. In order to reduce the amount of transmission process, an aperiodic sampled‐data event‐triggered mechanism is introduced to determine whether the measurement output should be released at certain time points which incorporate an appropriate triggering condition and sampling moments. Furthermore, a concept of finite‐time boundedness in the pth moment is proposed to access the performance of state estimator. The objective of this article is to design an event‐triggered state estimator to estimate the states of nodes such that, in the presence of time delays, uncertainties, and randomly changing coupling weights, the estimation error system is finite‐time bounded in the pth moment related to a given constant. Some sufficient conditions in form of linear matrix inequalities and algebraic inequalities are established to guarantee finite‐time boundedness. Finally, a numerical example is presented to show the effectiveness of the theoretical results.  相似文献   

6.
In this paper, a distributed extended Kalman filtering problem is studied for discrete‐time nonlinear systems with multiple fading measurements. To alleviate the network communication burden, the event‐triggered communication scheme is employed in both sensor‐to‐estimator channel and estimator‐to‐estimator channel. As such, the data transmission is executed only when the predefined event occurs. In addition, a set of independent random variables with known statistical properties is defined to represent the phenomenon of multiple fading measurements. The variance‐constrained approach is adopted to derive an upper bound for the estimation error covariance in consideration of the event‐triggered mechanism and truncated error by linearization. The filter gain for each node is then designed to minimize such an upper bound by recursively solving two Raccati‐like difference equations. By virtue of the stochastic stability theory, a sufficient condition is provided to guarantee the boundedness of the estimation error. Finally, a simulation example is presented to illustrate the feasibility and effectiveness of the proposed filtering algorithm.  相似文献   

7.
An event‐triggered observer‐based output feedback control issue together with triggered input is investigated for a class of uncertain nonlinear systems subject to unknown external disturbances. Two separate event‐triggered conditions are located on the measurement channel and control channel, respectively. An event‐triggered extended state observer (ETESO) is employed to estimate unmeasurable states and compensate uncertainties and disturbances in real time while it is not required for real‐time output measurement. Then, combined with backstepping method and active disturbance rejection control, an output feedback control scheme is proposed, where an event‐triggered input is developed for reducing the communication rate between the controller and the actuator. The triggered instants are determined by a time‐varying event‐triggered condition. Two simulations, including a numerical example and an permanent‐magnet motor, are illustrated to verify the effectiveness of the proposed schemes.  相似文献   

8.
This paper is concerned with event‐triggered H control for a class of nonlinear networked control systems. An event‐triggered transmission scheme is introduced to select ‘necessary’ sampled data packets to be transmitted so that precious communication resources can be saved significantly. Under the event‐triggered transmission scheme, the closed‐loop system is modeled as a system with an interval time‐varying delay. Two novel integral inequalities are established to provide a tight estimation on the derivative of the Lyapunov–Krasovskii functional. As a result, a novel sufficient condition on the existence of desired event‐triggered H controllers is derived in terms of solutions to a set of linear matrix inequalities. No parameters need to be tuned when controllers are designed. The proposed method is then applied to the robust stabilization of a class of nonlinear networked control systems, and some linear matrix inequality‐based conditions are formulated to design both event‐triggered and time‐triggered H controllers. Finally, two numerical examples are given to demonstrate the effectiveness of the proposed method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
This paper studies the coordination control problem of stabilizing large‐scale dynamically coupled systems via a novel event‐triggered distributed model predictive control (DMPC) approach. In order to achieve global performance, certain constraints relevant to the triggering instant are imposed on the DMPC optimization problem, and triggering mechanisms are designed by taking into account coupling influences. Specifically, the triggering conditions derived from the feasibility and stability analysis are based on the local subsystem state and the information received from its neighbors. Based on these triggering mechanisms, the event‐triggered DMPC algorithm is built, and a dual‐mode strategy is adopted. As a result, the controllers solve the optimization problem and coordinate with each other asynchronously, which reduces the amount of communication and lowers the frequency of controller updates while achieving global performance. The recursive feasibility of the proposed event‐triggered DMPC algorithm is proved, and sufficient parameter conditions about the prediction horizon and the triggering threshold are established. It shows that the system state can be gradually driven into the terminal set under the proposed strategy. Finally, an academic example and a realistic simulation problem to the water level of a 4‐tank system are provided to verify the effectiveness of the proposed algorithm.  相似文献   

10.
针对伺服电机驱动的连铸结晶器振动位移系统中存在时变负载转矩、参数不确定性等问题,本文提出了一种基于扩张状态观测器(extended state observer, ESO)的自适应非奇异终端滑模(nonsingular terminal sliding mode,NTSM)控制方法.首先,设计ESO对系统存在的综合扰动和不可测状态进行估计.然后,采用分层设计的方法,分别对位移跟踪子系统和电流环子系统设计基于ESO的自适应NTSM控制器和滑模控制器.为削弱ESO估计误差对跟踪精度的影响,在NTSM控制器中引入了自适应增益.可以证明,所设计的控制器能够保证闭环系统所有信号有界,系统状态可渐近收敛到原点附近的小邻域内.最后,仿真结果验证了所提出控制方法的有效性.  相似文献   

11.
In this paper, we investigate the observation and stabilization problems for a class of nonlinear Lipschitz systems, subject to network constraints, and partial state knowledge. In order to address these problems, an impulsive observer is designed, making use of the event‐triggered technique in order to diminish the network communications. Sufficient conditions are given to ensure a milder version of the separation principle for these systems, controlled via an event‐triggered controller. The proposed observer ensures practical state estimation, while the corresponding dynamic controller ensures practical stabilization. The sampling and the data transmission are carried out asynchronously. The dynamic controller is tested in simulation on a flexible joint. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
This paper designs the active disturbance rejection control (ADRC) to achieve finite‐time stabilization for a class of uncertain nonlinear systems. The proposed control incorporates both an extended state observer (ESO) as well as an adaptive sliding mode controller. The ESO is utilized to estimate the full system states and the total uncertainties, and the adaptive strategy is incorporated to deal with the estimation errors. It is proved that, with the application of the proposed control law, semi‐global finite‐time stabilization can be achieved. Effectiveness of the proposed method is illustrated with a numerical example.  相似文献   

13.
In this paper, the dynamic self‐triggered output‐feedback control problem is investigated for a class of nonlinear stochastic systems with time delays. To reduce the network resource consumption, the dynamic event‐triggered mechanism is implemented in the sensor‐to‐controller channel. Criteria are first established for the closed‐loop system to be stochastically input‐to‐state stable under the event‐triggered mechanism. Furthermore, sufficient conditions are given under which the closed‐loop system with dynamic event‐triggered mechanism is almost surely stable, and the output‐feedback controller as well as the dynamic event‐triggered mechanism are co‐designed. Moreover, a dynamic self‐triggered mechanism is proposed such that the nonlinear stochastic system with the designed output‐feedback controller is stochastically input‐to‐state stable and the Zeno phenomenon is excluded. Finally, a numerical example is provided to illustrate the effectiveness of proposed dynamic self‐triggered output‐feedback control scheme.  相似文献   

14.
In this paper, a composite‐errors‐based active disturbance rejection control law is proposed for surface vessels with exogeneous disturbances. The low‐frequency disturbances from wind, wave and ocean currents are estimated by a novel composite‐errors‐based extended state observer (ESO). Since the composite errors are composed of trajectory tracking errors and estimation errors, the disturbance rejection control is feedforward‐feedback composite control. The advantages of feedforward control and feedback control are exploited to reject system disturbances. Compared with conventional ESO‐based active disturbance rejection control, smaller estimation errors and smaller tracking errors can be achieved by the proposed disturbance compensation control. The effectiveness and superiority of the designed control law are illustrated by theoretical analysis and simulation results.  相似文献   

15.
针对含有非匹配干扰和未知动态的非仿射系统控制问题,提出了一种基于扩张状态观测器(ESO)的改进滑模控制(SMC)方案.本文首先利用扩张状态观测器,将原系统转变为一个包含干扰的二阶积分级联系统,使含有未知动态的非仿射系统控制器设计问题转化为二阶积分级联系统的控制器设计问题,从而使得控制器在设计过程中不需要对对象模型完全已...  相似文献   

16.
In this paper, we apply the active disturbance rejection control (ADRC) to stabilization for lower triangular nonlinear systems with large uncertainties. We first design an extended state observer (ESO) to estimate the state and the uncertainty, in real time, simultaneously. The constant gain and the time‐varying gain are used in ESO design separately. The uncertainty is then compensated in the feedback loop. The practical stability for the closed‐loop system with constant gain ESO and the asymptotic stability with time‐varying gain ESO are proven. The constant gain ESO can deal with larger class of nonlinear systems but causes the peaking value near the initial stage that can be reduced significantly by time‐varying gain ESO. The nature of estimation/cancelation makes the ADRC very different from high‐gain control where the high gain is used in both observer and feedback. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
This paper addresses the cooperative output regulation problem of multiagent systems with fixed and switching topologies. Each agent is a heterogeneous linear system, and the output of the exosystem can be available to only a subset of agents. For the agents that can directly access the exosystem, a common observer based on an event‐triggered strategy is constructed to estimate the exogenous signal for feedback control design. For the rest of the agents, estimators based on an event‐triggered mechanism to acquire the estimation value of the exogenous signal are designed under some essential assumptions. A decentralized event‐triggered formulation is considered first by applying a Lyapunov function for a fixed topology. Furthermore, a topology‐dependent triggering condition and the average dwell‐time switching law are deduced simultaneously by using multiple Lyapunov functions for switching topologies. Under communication constraints, we propose observer‐based and estimator‐based feedback controllers to solve the cooperative output regulation problem using available local information among agents. Two examples are finally provided to verify the effectiveness of the proposed theoretical results.  相似文献   

18.
基于ESO 的复合滑模面非奇异terminal 滑模控制   总被引:1,自引:0,他引:1  
针对传统非奇异terminal 滑模控制存在的收敛缓慢和控制输入抖振的问题, 提出采用复合滑模面函数和扩张状态观测器的控制器设计方法. 首先, 结合复合滑模面, 采用分阶段控制律提高系统收敛速度; 然后, 在此基础上使用扩张状态观测器在线估计并补偿系统的不确定量, 以有效削弱系统未建模动力学导致的抖振; 最后, 分别证明了以上两种方法的有限时间收敛特性. 仿真结果验证了所提出方法的有效性, 体现了系统的快速收敛和强鲁棒性等特点.  相似文献   

19.
This paper is concerned with the event‐triggered control problem for a class of strict feedback nonlinear networked systems. Different from the existing design methods, a novel user‐adjustable event‐triggered mechanism is first developed to determine the sampling state instants using the negative definite property of the derivatives of Lyapunov functions. Then, an event‐triggered control strategy is devised based on the sampled state vectors and backstepping techniques. It is proved that the proposed control scheme ensures the global convergence of the closed‐loop systems via Lyapunov analyses and the correlation criteria of real variable functions. Finally, two examples are performed to illustrate the effectiveness of the provided control approaches.  相似文献   

20.
Robust state estimation problem subject to a communication constraint is investigated in this paper for a class of wireless sensor networks constituted by multiple remote sensor nodes and a fusion node. An analytical robust fusion estimator using local event‐triggered transmission strategies is derived aiming to reduce energy consumption of the sensor nodes and refrain from network traffic congestion. Some conditions are presented guaranteeing the uniformly bounded estimation errors of the robust state estimator. Several numerical simulations are presented to show the validity of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号