首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Ceramic membranes have received more attention than polymeric membranes for the separation and purification of bio‐products owing to their superior chemical, mechanical and thermal properties. Commercially available ceramic membranes are too expensive. This could be overcome by fabricating membranes using low‐cost raw materials. The aim of this work is to fabricate a low‐cost γ‐Al2O3–clay composite membrane and evaluate its potential for the separation of bovine serum albumin (BSA) as a function of pH, feed concentration and applied pressure. To achieve this, the membrane support is prepared using low‐cost clay mixtures instead of very expensive alumina, zirconia and titania materials. The cost of the membrane can be further reduced by preparing a γ‐alumina surface layer on the clay support using boehmite sol synthesized from inexpensive aluminium chloride instead of expensive aluminium alkoxide using a dip‐coating technique. RESULTS: The pore size distribution of the γ‐Al2O3‐clay composite membrane varied from 5.4–13.6 nm. The membrane was prepared using stable boehmite sol of narrow particle size distribution and mean particle size 30.9 nm. Scanning electron microscopy confirmed that the surface of the γ‐Al2O3–clay composite membrane is defect‐free. The pure water permeability of the support and the composite membrane were found to be 4.838 × 10?6 and 2.357 × 10?7 m3 m?2 s?1 kPa?1, respectively. The maximum rejection of BSA protein was found to be 95%. It was observed that the separation performance of the membrane in terms of flux and rejection strongly depends on the electrostatic interaction between the protein and charged membrane. CONCLUSION: The successively prepared γ‐Al2O3‐clay composite membrane proved to possess good potential for the separation of BSA with high yield and could be employed as a low cost alternate to expensive ceramic membranes. Copyright © 2009 Society of Chemical Industry  相似文献   

2.
In order to assess the evolution of the confinement properties of clay engineered barriers (EBS) when in contact with metallic canisters containing radioactive wastes, Fe(0)-bentonite interactions need to be assessed. “45 days–80 °C” tests were performed using powdered FoCa7 bentonite and metallic iron. Since one fundamental parameter may be the available quantity of Fe(0), a wide range of Iron/Clay mass ratios (I/C) from 0 to 1/3 is used. The confinement power of clay material results from the swelling properties and the retention capacity. Thus, the major criterion which is chosen to assess the evolution of the confinement properties in this study is the variation of Cation Exchange Capacity (CEC). In parallel, the physico-chemical evolution of bentonite is studied using XRD and EDS-TEM microanalyses. The evolution of the distribution of iron environments is obtained by 57Fe Mössbauer spectroscopy.This study evidences that both kaolinite and smectite from the bentonite are altered into SiAlFe gels when in contact with Fe(0). These gels maturates into Fe-rich di-trioctahedral phyllosilicates, whose composition is bounded by the one of odinite and greenalite in a Fe–M+–4Si diagram when I/C = 1/3. Most of all, it is evidenced that the reaction depends on the available quantity of Fe(0). When the I/C ratio is between 1/30 and 1/7.5, the exchange capacity of FoCa7 bentonite starts decreasing, the consumption of Fe(0) becomes significant, the alteration of smectites occurs and secondary oxides are formed. The crystallization of Fe-rich phyllosilicates is observable when I/C ratio is higher, from a threshold between 1/7.5 and 1/5. Above I/C = 1/3.75, initial iron oxides are strongly consumed and participate in the incorporation of Fe2+ and Fe3+ in gels or new phyllosilicates octahedra.These experimental results were used as input data for the prediction of the long-term evolution of the EBS using Crunch reaction-transport model.  相似文献   

3.
For decades, numerous chemical pollutants have been described to interfere with endogenous hormone metabolism/signaling altering reproductive functions. Among these endocrine disrupting substances, Bisphenol A (BPA), a widely used compound, is known to negatively impact germ and somatic cells in the testis. Physical agents, such as ionizing radiation, were also described to perturb spermatogenesis. Despite the fact that we are constantly exposed to numerous environmental chemical and physical compounds, very few studies explore the impact of combined exposure to chemical and physical pollutants on reproductive health. The aim of this study was to describe the impact of fetal co-exposure to BPA and IR on testicular function in mice. We exposed pregnant mice to 10 µM BPA (corresponding to 0.5 mg/kg/day) in drinking water from 10.5 dpc until birth, and we irradiated mice with 0.2 Gy (γ-ray, RAD) at 12.5 days post-conception. Co-exposure to BPA and γ-ray induces DNA damage in fetal germ cells in an additive manner, leading to a long-lasting decrease in germ cell abundance. We also observed significant alteration of adult steroidogenesis by RAD exposure independently of the BPA exposure. This is illustrated by the downregulation of steroidogenic genes and the decrease of the number of adult Leydig cells. As a consequence, courtship behavior is modified, and male ultrasonic vocalizations associated with courtship decreased. In conclusion, this study provides evidence for the importance of broadening the concept of endocrine disruptors to include physical agents, leading to a reevaluation of risk management and regulatory decisions.  相似文献   

4.
The molecular motion in a β-form crystal of fully annealed poly(γ-methyl-d-glutamate) was investigated by means of an X-ray diffractometer and an infra-red spectrophotometer. The interchain periodicity (chains are bound side by side with intermolecular hydrogen bonds) increases linearly with increasing temperature, indicating ordinary thermal expansion of the lattice. The intersheet periodicty (sided chains pack into sheets) increases linearly up to 150°C and then the slope of the temperature dependence of the periodicty increases owing to the onset of active segmental motion of the side chains.It is evident from the temperature dependence of the wavenumber of the maximum of the infra-red absorption for NH stretching in the crystal that thermal expansion in the direction of the hydrogen bond is hardly affected by the segmental motion of the side chain.  相似文献   

5.
The optical activities of poly-(R)-lactide, poly-(S)-lactide, poly(β-hydroxybutyrate) and two β-hydroxyvalerate copolymers were measured in solution, as solid powders in suspension, and where possible, as films. Poly-(+)-3-methyl-1-pentene was also reinvestigated. In some cases the specific rotation values of powder samples showed significant differences from the values of the solution measurements. The discrepancies of the data observed seem to reflect the local environment of the polymer chains in supermolecular assemblies and consequently the solid state structure(morphology)of the polymers. The circular dichroism (CD) spectra of the polymers were also measured in solution and in the form of their films. For comparison, the CD spectra of the naturally occurring protein casein and of the synthetic polypeptide poly-(L)-proline were also measured.  相似文献   

6.
A new associating system has been elaborated from mixing a degradable polymer, poly(β‐malic acid‐co‐β‐ethyladamantyl malate), and a β‐cyclodextrin polymer in aqueous solution. Viscosity and dynamic light scattering measurements have been made on solutions of the single copolyester and of mixtures of both polymers. Studies on copolyesters with different percentages of hydrophobic groups (0–7.5%) show that a small proportion of the chains (less than 5% in weight) are aggregated in large structures (100 nm) which dominate the scattering intensity. The mixtures exhibit slow diffusive relaxation modes which correlate with a large viscosity enhancement at low concentration. These effects, which depend sensitively on pH, are attributed to the presence of polydisperse complexes of copolyester and β‐cyclodextrin polymer. The influence of pH, ionic strength, medium composition, and concentration were examined on the mixture of copolymers. It was found that the association properties are controlled by the net charge on the amphiphilic copolyester. © 2001 Society of Chemical Industry  相似文献   

7.
A terpolymeric semi‐interpenetrating network (IPN) has been synthesized by carrying out the aqueous polymerization of methacrylamide in the presence of poly(ethylene glycol) (PEG) and natural polysaccharide starch, and its enzymatic degradation has been studied by a newly developed technique, known as the ‘flow‐through diffusion cell’ (FTDC) method, in a phosphate buffer medium of pH 6.8 at the physiological temperature, 37 °C. The hydrogel exhibits different degradation behaviors when studied by the ‘traditional degradation/dissolution test’ (TDT) or the FTDC method. The degradability is suppressed in the FTDC method, owing to the adsorption of amylase molecules onto the filler particles. The nature of the filler particles also affects the degradation behavior of the hydrogels. Finally, the release of the model drug, vitamin B12, from the degrading hydrogels has also been studied by the FTDC method. The results obtained indicated that the release behavior also depends on α‐amylase‐induced degradability. Copyright © 2006 Society of Chemical Industry  相似文献   

8.
Poly(methyl methacrylate) (PMMA) and poly(methyl methacrylate)/clay nanocomposite (PMMA/OBT) were successfully prepared in dioxan at room temperature via in situ radical polymerization initiated by a new Ni(II)α‐ Benzoinoxime complex as a single component in presence of 3% by weight of an organically modified bentonite (OBT) (originated from Maghnia, Algeria) and characterized by FTIR, 1H‐NMR and viscometry. Mainly intercalated and partially exfoliated PMMA/OBT nanocomposite was elaborated and evidenced by X‐Ray diffraction (XRD) and transmission electron microscopy (TEM). The intrinsic viscosity of PMMA/OBT nanocomposite is much higher than the one of pure PMMA prepared under the same conditions. Differential scanning calorimetry (DSC) displayed an increase of 10°C in the glass transition temperature of the elaborated PMMA/OBT nanocomposite relative to the one of pure PMMA. Moreover, the TGA analysis confirms a significant improvement of the thermal stability of PMMA/OBT nanocomposite compared to virgin PMMA: the onset degradation temperature of the nanocomposite, carried out under nitrogen atmosphere, increased by more than 45°C. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
The peroxidation of linoleic acid (LA) in the absence and presence of either Cu(II) ions alone or Cu(II)‐ascorbate combination was investigated in aerated and incubated emulsions at 37°C and pH 7. LA peroxidation induced by either copper(II) or copper(II)‐ascorbic acid system followed pseudo‐first order kinetics with respect to primary (hydroperoxides) and secondary (aldehydes‐ and ketones‐like) oxidation products, detected by ferric‐thiocyanate and TBARS tests, respectively. α‐Tocopherol showed both antioxidant and prooxidant effects depending on concentration and also on the simultaneous presence of Cu(II) and ascorbate. Copper(II)‐ascorbate combinations generally led to distinct antioxidant behavior at low concentrations of α‐tocopherol and slight prooxidant behavior at high concentrations of α‐tocopherol, probably associated with the recycling of tocopherol by ascorbate through reaction with tocopheroxyl radical, while the scavenging effect of α‐tocopherol on lipid peroxidation was maintained as long as ascorbate was present. On the other hand, in Cu(II) solutions without ascorbate, the antioxidant behavior of tocopherol required higher concentrations of this compound because there was no ascorbate to regenerate it. Practical applications: Linoleic acid (LA) peroxidation induced by either copper(II) or copper(II)‐ascorbic acid system followed pseudo‐first order kinetics with respect to primary (hydroperoxides) and secondary (e.g., aldehydes and ketones) oxidation products. α‐Tocopherol showed both antioxidant and prooxidant effects depending on concentration and also on the simultaneous presence of Cu(II) and ascorbate. The findings of this study are believed to be useful to better understand the actual role of α‐tocopherol in the preservation of heterogenous food samples such as lipid emulsions. Since α‐tocopherol (vitamin E) is considered to be physiologically the most important lipid‐soluble chain‐breaking antioxidant of human cell membranes, the results can be extended to in vivo protection of lipid oxidation.  相似文献   

10.
The activity of β‐galactosidase immobilized into a poly(2‐hydroxyethyl methacrylate) (pHEMA) membrane increased from 1.5 to 10.8 U/g pHEMA upon increase in enzyme loading. The Km values for the free and the entrapped enzyme were found to be 0.26 and 0.81 mM, respectively. The optimum reaction temperatures for the free and the entrapped β‐galactosidase were both found to be 50°C. Similarly, the optimum reaction pH was 7.5 for both the free and the entrapped enzyme. The immobilized β‐galactosidase was characterized in a continuous system during lactose hydrolysis and the operational inactivation rate constant (kiop) of the entrapped enzyme was found to be 3.1 × 10−5 min−1. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1367–1373, 1999  相似文献   

11.
A new halogen‐free flame retardant was developed by integrating β‐cyclodextrin, triazin ring, and nanohydroxyapatite (BSDH) into a hybrid system. A β‐cyclodextrin was grafted to a commercially available SABO®STAB UV94 via an aromatic deanhydrate. The BSDH was prepared in situ in the presence of β‐cyclodextrin‐grafted nitrogen‐rich precursor. The resulting hybrid was applied as a flame retardant for poly(lactic acid) (PLA) and compared for performance with ammonium polyphosphate (APP). PLA composites containing BSDH and APP, individually or simultaneously, were examined for thermal degradation and flammability by TGA, cone calorimeter, and pyrolysis‐combustion flow calorimetry. TGA results confirmed enhancement of thermal stability of PLA with assistance of BSDH compared to APP. The gases evolved during thermal degradation were assessed by a thermogravimetric analysis and Fourier infrared spectroscopy device. APP revealed catalytic effect to initiate PLA degradation, while BSDH continued to release some gases at elevated temperatures. The flame retardancy of PLA/APP/BSDH blend containing only 10 wt.% of additives was significantly improved. In cone calorimetric tests, a significant fall in peak of heat release rate was observed for this sample, 49% more than that of neat PLA, which was indicative of more gas and condensed phase reflected in more char residue. The corresponding PLA/APP sample, however, showed 17% improvement, as compared to neat PLA. Also, total heat release rate of PLA/APP/BSDH was 45 MJ.m?2, whereas those of PLA and PLA/APP were 89 and 65 MJ.m?2, respectively. BSDH and APP showed a synergistic effect on improving the flame retardancy of PLA composites.  相似文献   

12.
13.
A systematic investigation of the influence of “pH” on the product identity from the CuII/H-Aib-l-Ala-OH (LH) reaction system is described, where H-Aib-l-Ala-OH is α-aminoisobutyryl-l-alanine. The pH variation has led to the synthesis of two discrete complexes, the structures of which have been determined by single-crystal X-ray crystallography. The “low pH” complex {[CuClL](H2O)2.5}n (1) is a 3D coordination polymer, in which the dipeptide monoanion L behaves as a η1112 ligand binding one CuII atom through its amino nitrogen and neutral peptide oxygen, and an adjacent CuII atom through one of its carboxylate oxygen. The “higher pH” complex {[Cu(H−1L)(EtOH)](EtOH)}n (2) is a chain (1D) compound, in which the dipeptide dianion H−1L2− uses its amino nitrogen, deprotonated peptide nitrogen and both carboxylate oxygens to bridge two metal centres.  相似文献   

14.
Branched polyethylene (PE) was prepared with a novel (α‐diimine)nickel(II) complex of 2,3‐bis(2,6‐dimethylphenyl)‐butanediimine nickel dichloride {[2,6‐(CH3)2C6H3? N?C(CH3)C(CH3)?N? 2,6‐(CH3)2C6H3]NiCl2} activated by methylaluminoxane in the presence of a single ethylene monomer. The influences of various polymerization conditions, including the temperature, Al/Ni molar ratio, Ni catalyst concentration, and time, on the catalytic activity, molecular weight, degree of branching, and branch length of PE were investigated. According to gel permeation chromatography, the weight‐average molecular weights of the polymers obtained ranged from 1.7 × 105 to 6.0 × 105, with narrow molecular weight distributions of 2.0–3.5. The degree of branching in the polymers rapidly increased with the polymerization temperature increasing; this led to highly crystalline to totally amorphous polymers, but it was independent of the Al/Ni molar ratio and catalyst concentration. At polymerization temperatures greater than 20°C, the resultant PE was confirmed by 13C‐NMR to contain significant amounts of not only methyl but also ethyl, propyl, butyl, amyl, and long branches (longer than six carbons). The formation of the branches could be illustrated by the chain walking mechanism, which controlled their specific spacing and conformational arrangements with one another. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1123–1132, 2002; DOI 10.1002/app.10398  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号