首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of organically modified montmorillonite (OMMT) on polyamide nanocomposites was studied. OMMT/polyamide nanocomposites were prepared through direct melt compounding on a conventional twin screw extruder. With increasing the loading of OMMT, the Young modulus, elongation at break and tensile strength increased. 1 mass% loading of OMMT/polyamide resulted in 11% increase of the elongation at break compared to virgin polymer, while 4% loading showed 13%. Rheological data like torque, fusion time, viscosity and shear rate were also recorded on Brabender Plasticorder and were correlated with M = CSa and τ = K(γ)n. The value n < 1 indicated pseudo-plastic nature of the polyamide/OMMT. The torque decreased with increased loading due to soft nature of OMMT, which acts as a lubricating agent. This improvement in mechanical properties with increase in amount of OMMT loading was also indicated by the reduction in shear viscosity and torque.  相似文献   

2.
The effects of organophilic montmorillonite (OM)/poly(ethylene glycol) (PEG) hybrids and polypropylene (PP) on the phase morphology, rheological behaviors, and mechanical properties of ultrahigh molecular weight polyethylene (UHMWPE) were investigated. The presence of the OM/PEG hybrids and PP in UHMWPE was found that it was able to lead to a significant reduction of melt viscosity and enhancement in tensile strength, and elongation at break of UHMWPE. A quantitative analysis indicated a larger affinity of the OM to the PEG than to PP or UHMWPE in the composites, suggesting that OM was intercalated by PEG. This was proposed to be responsible for the reduction of viscosity. Polarizing optical microscopy analysis, on the other hand, indicated that the dispersed OM, which acted as a nucleating agent, lowered the spherulite dimension and increased the spherulite number, resulting in high tensile strength and elongation at break. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

3.
Lijuan Zhao  Qin Du 《Polymer》2006,47(7):2460-2469
Polypropylene/montmorillonite nanocomposites (PPCNs) with 3% organophilic montmorillonite (OMMT) content were prepared via ultrasonic extrusion. The objective of present study was to investigate the effects of ultrasonic oscillations in processing on the morphology and property development of PPCNs. XRD and TEM results confirmed the intercalated structure of OMMT in conventional nanocomposite (without ultrasonic treatment) and ultrasonicated nanocomposite, but ultrasonic oscillations could make silicate layers finely dispersed and a little exfoliated. According to SEM, the OMMT particles were evenly and finely dispersed in the ultrasonicated nanocomposite via ultrasonic oscillations, and the aggregation size of clay particles was about 100 nm, which is less than that in conventional nanocomposite. The crystalline dimension, crystalline morphology and the growth rate of crystallization in PPCNs were investigated by DSC and PLM, it was found that the OMMT particles and ultrasonic oscillations played an important role in the nucleation rate, crystallization temperature and spherulite size of PP matrix in nanocomposites. Compared with conventional nanocomposite, the mechanical properties of the ultrasonicated nanocomposite increased due to the improved dispersion of OMMT and diminished spherulite size. The thermal stability and the rheological behavior of PP and its nanocomposites were both studied by thermogravimetry and high pressure rheometer, respectively.  相似文献   

4.
Three-component composites consisting of polypropylene (PP) matrix, poly(vinyl butyral) (PVB) modifier, and mica filler at various ratios of matrix to modifies and a constant mica content (30 wt %) were prepared by using two different kinds of PVB, viz., PVB and PVB-P. By correlating with the morphology, the dynamic mechanical and mechanical properties of the composites are studied in detail. PVB component in PP/PVB/mica composites cannot display a reinforcing effect to PP/mica binary composites, while impact strength of the composites are reduced further. It associates with incompatibility between PP and PVB, and as well as higher glass transition temperature of PVB. For PP/PVB-P/mica composites, stiffness decreases and, meanwhile, impact strength increases when PVB-P content is 7 wt %. The improvement of impact strength on PP/mica binary composites at the composition is due to a little affinity between the PP matrix and the plasticizer of PVB-P. Moreover, a minor amount of PP-g-MA in the 63/7/30 PP/PVB/mica composites only acts as an adhesion promoter. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65: 2003–2011, 1997  相似文献   

5.
Understanding the rheological behavior of plasticized polylactide (PLA) contributed to the optimization of processing conditions and revealed the microstructure–property relationships. In this study, the morphological, thermal, steady and dynamic rheological properties of the PLA/poly(ethylene glycol) (PEG) blends were investigated by scanning electron microscope, differential scanning calorimeter, and capillary and dynamic rheometers, respectively. The results illuminated that the melt shear flow basically fitted the power law, whereas the temperature dependence of the apparent shear viscosity (ηa) or complex viscosity (η*) followed the Arrhenius equation. Both the neat PLA and PLA/PEG blends exhibited shear‐thinning behavior. Because the incorporation of PEG reduced the intermolecular forces and improved the mobility of the PLA chains, the ηa, η*, and storage and loss moduli of the PLA/PEG blends decreased. The PEG content (WPEG) ranged from 0 to 10 wt %, both ηa and η* decreased significantly. However, the decrements of ηa and η* became unremarkable when WPEG exceeded 10 wt %. The reason was attributed to the occurrence of phase separation, which resulted in the decrease in the plasticization and lubrication efficiencies. This study demonstrated that the addition of the right amount of PEG obviously improved the flow properties of PLA. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42919.  相似文献   

6.
Poly (vinyl chloride), PVC, and poly(vinylidene fluoride), PVDF, are incompatible polymers. Poly(neopentyl glycol adipate), PDPA, is miscible with both PVC and PVDF. With PDPA acting as a compatibilizer between PVC and PVDF. compatible PVC/PDPA/PVDF blends can be formed at PVDF content of about less than 50wt%. Above 50wt% PVDF the ternary blends exist in two phases exhibiting two glass transition temperatures, Tg, PVC is the main contributor to the mechanical strength while PDPA and PVDF contribute to the elastic properties of these blends. A compatible blend of 55/22.5/22.5 wt% PVC/PDPA/PVDF exhibiting one single Tg appears to show an interesting balance of the properties of the blend components.  相似文献   

7.
8.
The contraction of poly(acrylic acid-co-butyl methacrylate) (P(AA-co-BMA)) gel induced by complexation with linear Poly(N-vinyl-2-pyrrolidone) (PVP) is quite different from that of poly(acrylic acid) (PAA) or poly(methacrylic acid) (PMAA) gel. The dynamic mechanic properties vary greatly between complexed and uncomplexed networks. It was found that the concentration of PVP has a strong effect on the complexation with P(AA-co-BMA) gel and the dynamic mechanic properties of the P(AA-co-BMA)/PVP complexes.  相似文献   

9.
Large enhancements of the melt strength of polypropylene (PP) were achieved by the introduction of specific unsaturated linear polyester (ULP) branches using melt grafting. The transient torque curves and optical rheology microscope images indicated that branching reactions took place and the ULP had been grafted onto the PP backbone. Shear rheological behaviors of three kinds of PP were investigated using rotational rheometer under dynamic shear mode with periodic shear rate. These PP samples are foamable PP (FPP) with sparse branches obtained by grafting ULP, commercial high melt strength PP (HMS PP) for foaming and conventional linear PP (EPS). It was found that the rheological properties of FPP, the HMS PP, were distinctly different from those of conventional PP. Storage modulus, steady state compliance and zero shear viscosity increased in comparison with EPS, while shear viscosity decreased. This result implied the presence of branching structures that was not revealed in conventional PP. In melt flow measurements, extrusion swell that was a prominent behavior of branching PP was observed also for FPP and PF. Compared to linear PP, FPP and PF showed distinct sag-resistant property and lower melt flow index. On the other hand, to estimate the extent of branching, a detailed method was applied using the obtained zero shear viscosity. The result showed that FPP was grafted by sparse ULP. From these results, it was found that FPP showed obvious enhancements in rheological behaviors similar to PF, although its melt strength was lower than that of PF due to the presence of shorter branching chains grafted on the backbone of FPP.  相似文献   

10.
This work attempts to develop a carbon black (CB) filled conductive polymer composite based on poly(ethylene terephthalate) (PET) and polypropylene (PP). The process follows by localizing the CB particles in the minor phase (PET), and then the conductive masterbatch was elongated to form conductive microfibrils in PP matrix during melt extrusion process. After compression molding, a fine conductive three‐dimensional microfibrillar network is constructed. For comparison purpose, CB, PET, and PP are mixed using different pattern. The morphology and the volume resistivity of the obtained composites are evaluated. Electrical conductivity investigation shows that the percolation threshold and resistivity values are dependent on the CB concentration. The best morphological observation shows that the PET phases forms well‐defined microfibrils, and CB particles overwhelmingly localize in the surfaces of the PET microfibrils, which led to a very low percolation threshold, i.e., 4.5 phr, and a reasonable conductivity. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
Poly(ethylene terephthalate) (PET) chips were coated by trisilanolphenyl–polyhedral oligomeric silsesquioxane (T‐POSS) and hexakis (para‐allyloxyphenoxy) cyclotriphosphazene (PACP) using the predispersed solution method, and PET/PACP/T‐POSS hybrids were further prepared by the melt‐blending method. The influence of T‐POSS on the rheological, thermal, and mechanical properties and flame retardancy of PET/PACP composites were discussed. The results suggest that T‐POSS was homogeneously dispersed in the PET matrix, which reduced the negative effects on polymer rheology and mechanical properties. For the PET/4%PACP/1%T‐POSS sample, the tensile strength at break and Tg increased from 29.67 MPa and 81.7 °C (PET/5%PACP) to 34.8 MPa and 85.8 °C, respectively, but the sample also self‐extinguished within 2 s, and the heat release capacity was reduced by 27.9% in comparison with that of neat PET.© 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45912.  相似文献   

12.
Establishing structure-properties relationships for an associative polymer requires a precise knowledge of its structure. In previous works, we studied water-soluble telechelic perfluorocarbon (C8F17) derivatives of poly(ethylene glycol)s. They exhibit stronger hydrophobic intermolecular associations than the corresponding hydrocarbon derivatives (C8H17). We now report the synthesis and study of one-ended perfluorocarbon derivative of poly(ethylene glycol). The composition and structure of this polymer were elucidated before analysing its behaviour in aqueous solution by viscosimetry and 19F NMR. The synthesis procedure allows us to reach total grafting. This polymer presents a micellar behaviour above 2×10−4 g/ml and an associative behaviour above 10−3 g/ml.  相似文献   

13.
It is well-known that introduction of charged groups to poly(N-isopropylacrylamide) (PNIPAM) raises its phase transition temperature. However, the influence of charged groups on structural evolution and dehydration dynamics of weakly charged PNIPAM during phase transition still lacks systematic investigation. In the current study, armed with rheometer and two-dimensional Fourier transform infrared spectrometer (2D-FTIR), we investigated on mesoscopic and microscopic scales the phase transition of sodium poly(N-isopropylacrylamide-co-2-acrylamido-2-methylpropanesulfonate), abbreviated as poly(NIPAM-co-NaAMPS), with charge density of 1–10%. At ambient temperature, scaling exponent of poly(NIPAM-co-NaAMPS) varies from that of neutral polymer to polyelectrolytes as charge density increases. Above phase transition temperature, mesoscopic structure of poly(NIPAM-co-NaAMPS) varies from network of physical gel to viscoelastic liquid containing branched aggregates with increase of charge density, indicating increasing hindrance to intra/inter-chain association due to electrostatic repulsion. On a molecular level, poly(NIPAM-co-NaAMPS) exhibits distinctive microdynamic sequence of dehydration during phase transition, in contrast to neutral PNIPAM. In particular, sulfonate groups decouple the cooperative dehydration of alkyl and carbonyl groups, resulting in their distinctive phase transition temperature as well as temperature range. In analogy to hydration of proteins, it is proposed that the microdynamic sequence, implying the hydration stability of each group, is closely related to the density of hydration layer as well as influence of electrostatic field generated by charged groups. For poly(NIPAM-co-AMPS) with charge density of 3%, there still remains 72.3% of hydrogen bonds between carbonyl group and water at 60 °C, meanwhile a highly hydrated network forms with network strands 1–2 times as long as the copolymer chain length.  相似文献   

14.
This work aimed to study, for the first time, the melt blending of poly(lactic acid) (PLA) and ethylene acrylic acid (EAA) copolymer by a novel vane extruder to toughen PLA. The phase morphologies, mechanical, and rheological properties of the PLA/EAA blends of three weight ratios (90/10, 80/20, and 70/30) were investigated. The results showed that the addition of EAA improves the toughness of PLA at the expense of the tensile strength to a certain degree and leads the transition from brittle fracture of PLA into ductile fracture. The 80/20 (w/w) PLA/EAA blend presents the maximum elongation at break (13.93%) and impact strength (3.18 kJ/m2), which is 2.2 and 1.2 times as large as those of PLA, respectively. The 90/10 and 80/20 PLA/EAA blends exhibit droplet‐matrix morphologies with number average radii of 0.30–0.73 μm, whereas the 70/30 PLA/EAA blend presents an elongated co‐continuous structure with large radius (2.61 μm) of EAA phase and there exists PLA droplets in EAA phase. These three blends with different phase morphologies display different characteristic linear viscoelastic properties in the low frequency region, which were investigated in terms of their complex viscosity, storage modulus, loss tangent, and Cole‐Cole plots. Specially, the 80/20 PLA/EAA blend presents two circular arcs on its Cole‐Cole plot. So, the longest relaxation time of the 80/20 blend was obtained from its complex viscosity imaginary part plot, and the interfacial tension between PLA and EAA, which is 4.4 mN/m, was calculated using the Palierne model. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40146.  相似文献   

15.
In this study, we prepared poly(lactic acid) (PLA)/poly(ethylene glycol) (PEG)/sodium chloride (NaCl) blends by melt blending with a triple‐screw dynamic extruder. The effects of PEG on the thermal property, mechanical property, and morphology of blends were investigated in detail. It was found that the incorporation of PEG and NaCl significantly improved the crystallization rate, elongation at break, surface adhesion, and reduced viscoelasticity of PLA. The blends were further batch‐foamed at different temperatures with supercritical carbon dioxide to study the foaming properties. The results of PLA/PEG/NaCl (50 : 10 : 40 wt %) composites after foaming and particle leaching revealed that an interconnected bimodal porous scaffold with the highest porosity of 89% could be achieved. Furthermore, the addition of PEG can significantly reduce the water contact angle so as to enhance the wetting ability of the scaffolds. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41181.  相似文献   

16.
Polymer blend systems offer a versatile approach for tailoring the properties of polymer materials for specific applications. In this study, we investigated the compatibility of polybutylene terephthalate (PBT) and poly(ethylene glycol) (PEG) blends processed using a twin-screw extruder, with the aim of enhancing their compatibility. Phthalic anhydride (PAn) and phthalic acid (PAc) were used as potential compatibilizers at different concentrations to improve interfacial interactions between PBT and PEG. Blend morphologies were characterized using scanning electron microscopy, which revealed improved interfacial compatibility and reduced phase separation with the incorporation of small amounts of PAn and PAc. Differential scanning calorimetry analysis indicated changes in the melting temperature (Tm) and glass transition temperature (Tg) of the blends owing to the compatibilizing effects of PAn and PAc. Dynamic mechanical analysis further corroborated the influence of the compatibilizers on the Tg and viscoelastic behavior. Thermogravimetric analysis demonstrated enhanced thermal stability with the addition of either PAn or PAc. Rheological measurements indicated an increase in complex viscosity with increasing compatibilizer content, indicating improved compatibility. The degradation point (Td) of PBT/PEG blend increased from 158 to 200 and 319°C with the incorporation of 5 phr PAn and 2 phr PAc, respectively. Mechanical properties, including tensile strength, Young's modulus, and Izod impact strength, were evaluated. For instance, the tensile strength of PBT/PEG blend was enhanced from 43.5 to 48.7 and 49.7 MPa by incorporating 5 phr PAn and 2 phr PAc, respectively. However, the impact strength of PBT/PEG blend increased from 3.0 to 4.3 and 4.2 kJ/m2 with the addition of 1 phr PAn and 1 phr PAc, respectively. The findings demonstrated that adding 5 phr PAn or 2 phr PAc to the PBT/PEG blends was advantageous, achieving a harmony of performance benefits and compromises. Rheological observations contributed significantly to the mechanical and thermal properties. Overall, the study highlights the significance of utilizing PAn and PAc as effective compatibilizers for enhancing the properties of PBT/PEG blends, making them potential candidates for various applications.  相似文献   

17.
The tensile and fracture behaviour of neat α and β nucleated isotactic polypropylene and rubber-modified α and β nucleated isotactic polypropylene has been investigated at test speeds of 0.0001-10 ms−1 in the temperature range −30 to +60 °C. The presence of the β phase had little effect at low temperature. However, at +25 and +60 °C, it increased the speeds corresponding to the ductile-brittle transition in the neat polymer by more than three decades. This behaviour has been linked to changes in microdeformation mechanisms observed at the lamellar and spherulitic level, an increase in cavitational deformation in tensile tests and an increase in the strength of the β relaxation in dynamic mechanical spectra. In the blends, the presence of the β phase led to somewhat higher energy dissipation in regimes of ductile fracture. However, the ductile-brittle transitions were not significantly affected. The modifier phase was therefore inferred to control the initiation and propagation of the plastic zone ahead of the crack tip during fracture.  相似文献   

18.
The use of nanoclays as additives for polymer matrices requires, in some cases (with non-polar matrices) the use of a compatibilizer agent which will act as a bridge or permanent buffer for nanoclay-matrix interaction. In this research, we have worked on the improvement of mechanical and thermal properties of polypropylene matrices by adding montmorillonite based nanoclays (MMT) which have been previously modified with an organic component (a quaternary ammonium salt modifier). In this particular case, we have worked on the optimization of the compatibilizer:nanoclay ratio. As a compatibilizer agent it has been used a propylene graft maleic anhydride copolymer (PP-g-MA) and the PP-g-MA:MMT ratio has varied from 0.25:1 to 4:1. Nanoclay dispersion and intercalation–exfoliation degree has been investigated by X-ray diffraction spectroscopy (XRD) and transmission electron microscopy (TEM). Also, mechanical and thermal properties for different PP-g-MA:MMT ratios have been determined. The results show optimum dispersion and intercalation–exfoliation levels for PP-g-MA:MMT ratios close to 3:1 and 4:1 and also we can observe a slight increase in mechanical and especially in thermal properties for similar ratios.  相似文献   

19.
Poly(vinyl alcohol)/poly(ethylene glycol) hydrogels containing curcumin as a drug and the various amounts of a montmorillonite nanoclay are prepared using the freezing–thawing method. Nanoclay quantity influence on the physicomechanical properties and the drug release rate of the hydrogel as well as relationship between them is investigated. X-Ray diffraction and Atomic force microscopy analysis reveal the nanoclays have an intercalation structure in the hydrogel, and the hydrogel crystallization decreases with increasing the nanoclay inclusion. From the SEM micrographs observation, it was revealed that due to the presence of the nanoclay in the hydrogel, its porosity decreased. The naonoclay has an amount-depended dual effect on the hydrogel swelling. The swelling mechanism is a normal Fickian diffusion for all the hydrogel samples. Strong physical interactions between the nanoclays and the polymer chains in the nanocomposite hydrogels are evidenced by the rheological studies. These interactions lead to significant reinforcement of the hydrogel tensile strength, intensified by the nanoclay amount. Interestingly, the nanoclays show the capability of accelerating and, also, decelerating the drug release of the hydrogel. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47843.  相似文献   

20.
Cationic dyeable poly(trimethylene terephthalate) (CD‐PTT) and metallocene isotactic polypropylene (m‐iPP) polymers were extruded (in proportions of 75/25, 50/50, and 25/75) from two melt twin‐screw extruders to prepare three CD‐PTT/m‐iPP conjugated filaments of the island–sea type. This study investigated the thermal properties and mechanical characteristics of the CD‐PTT/m‐iPP conjugated filaments with gel permeation chromatography, differential scanning calorimetry, thermogravimetric analysis, potentiometry, rheometry, density gradients, wide‐angle X‐ray diffraction, extension stress–strain measurements, and scanning electron microscopy. The rheological behavior of the CD‐PTT/m‐iPP polyblended polymers exhibited negative‐deviation blends, and the 50/50 CD‐PTT/m‐iPP blend showed a minimum value of the melt viscosity. The experimental results from differential scanning calorimetry indicated that CD‐PTT and m‐iPP molecules formed an immiscible system. The tenacity of the CD‐PTT/m‐iPP conjugated filaments decreased initially and then increased as the m‐iPP content increased. Morphological observations revealed that the blends were in a dispersed phase structure. A pore/filament morphology of a larger size (0.5–3 μm in diameter) was observed after a 1,1,1,3,3,3‐hexafluoro‐2‐propanol (CD‐PTT was removed)/decalin (m‐iPP was removed) treatment in the cross section of a CD‐PTT/m‐iPP conjugated filament. The CD‐PTT and m‐iPP polymers were identified as an immiscible system. Blends with 10 wt % compatibilizer exhibited the maximum improvement in the tenacity. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2387–2394, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号