首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
小波包信息熵特征矢量光谱角高光谱影像分类   总被引:1,自引:0,他引:1       下载免费PDF全文
目的 针对高光谱数据波段多、数据存在冗余的特点,将小波包信息熵特征引入到高光谱遥感分类中。方法 通过对光谱曲线进行小波包分解变换,定义了小波包信息熵特征矢量光谱角分类方法(WPE-SAM),基于USGS光谱库中4种矿物光谱数据的分析表明,WPE-SAM可增大类间地物的可区分性。在特征矢量空间对Salina高光谱影像进行分类计算,并讨论了小波包最佳分解层的确定,分析了WPE-SAM与光谱角制图(SAM)方法的分类精度。结果 Salina数据实例计算表明:小波包信息熵矢量能较好地描述原始光谱特征,WPE-SAM分类方法可行,总体分类精度(OA)由SAM的78.62%提高到WPE-SAM的78.66%,Kappa系数由0.769 0增加到0.769 5,平均分类精度(AA)由83.14%提高到84.18%。此外,通过Pavia数据验证了WPE-SAM分类方法具有较强的普适性。结论 小波包信息熵特征可较好地表示原始光谱波峰、波谷等特征信息,定义的小波包信息熵特征矢量光谱角分类方法(WPE-SAM)可增大类间地物可区分性,有利于分类。实验结果表明,WPE-SAM分类方法技术可行,总体精度及Kappa系数较SAM有一定的提高,且有较强的普适性。但WPE-SAM方法精度与效率有待进一步提高。  相似文献   

2.
目的 高光谱遥感影像由于其巨大的波段数直接导致信息的高冗余和数据处理的复杂,这不仅带来庞大的计算量,而且会损害分类精度。因此,在对高光谱影像进行处理、分析之前进行降维变得非常必要。分类作为一种重要的获取信息的手段,现有的基于像素点和图斑对象特征辨识地物种类的方法在强噪声干扰训练样本条件下精度偏低,在对象的基础上,将光谱和空间特征相似的对象合并成比其还要大的集合,再按照各个集合的光谱和空间特征进行分类,则不容易受到噪声等因素的干扰。方法 提出混合编码差分进化粒子群算法的双种群搜索策略进行降维,基于支持向量机的多示例学习算法作为分类方法,构建封装型降维与分类模型。结果 采用AVIRIS影像进行实验,本文算法相比其他相近的分类方法能获得更高的分类精度,达到96.03%,比其他相近方法中最优的像元级的混合编码的分类方法精度高出0.62%。结论 在针对强干扰的训练样本条件下,本文算法在降维过程中充分发挥混合编码差分进化算法的优势,分类中训练样本中的噪声可以看做多示例学习中训练包"歧义性"的特定表现形式,有效提高了分类的精度。  相似文献   

3.
摘要:对于高光谱影像存在高维非线性、数据冗余多、纯训练样本难以提取等不足,本文引入频率域空间的谐波分析(Harmonic Analysis,HA)理论并提出了一种高光谱影像的HA-Bayes监督分类方法。该方法在保持高光谱数据空-谱特性不变的情况下,从光谱维角度分析不同分解层的影像光谱谐波特征,将高光谱影像变换成由谐波能量谱组成的频率域特征矢量信息。通过建立谐波能量谱特征向量的先验知识,实现Bayes准则下谐波能量谱特征矢量信息判别与分类,最终实现高光谱影像分类。将此方法应用到ROSIS高光谱影像分类时获得的分类总体精度达85.5%,Kappa系数也达到了0.812。进一步实验也证明频率域的谐波分析在高光谱遥感影像特征提取与分类方面具有更好的优势和潜力。  相似文献   

4.
目的 为了解决基于卷积神经网络的算法对高光谱图像小样本分类精度较低、模型结构复杂和计算量大的问题,提出了一种变维卷积神经网络。方法 变维卷积神经网络对高光谱分类过程可根据内部特征图维度的变化分为空—谱信息融合、降维、混合特征提取与空—谱联合分类的过程。这种变维结构通过改变特征映射的维度,简化了网络结构并减少了计算量,并通过对空—谱信息的充分提取提高了卷积神经网络对小样本高光谱图像分类的精度。结果 实验分为变维卷积神经网络的性能分析实验与分类性能对比实验,所用的数据集为Indian Pines和Pavia University Scene数据集。通过实验可知,变维卷积神经网络对高光谱小样本可取得较高的分类精度,在Indian Pines和Pavia University Scene数据集上的总体分类精度分别为87.87%和98.18%,与其他分类算法对比有较明显的性能优势。结论 实验结果表明,合理的参数优化可有效提高变维卷积神经网络的分类精度,这种变维模型可较大程度提高对高光谱图像中小样本数据的分类性能,并可进一步推广到其他与高光谱图像相关的深度学习分类模型中。  相似文献   

5.
目的 高光谱图像包含了丰富的空间、光谱和辐射信息,能够用于精细的地物分类,但是要达到较高的分类精度,需要解决高维数据与有限样本之间存在矛盾的问题,并且降低因噪声和混合像元引起的同物异谱的影响。为有效解决上述问题,提出结合超像元和子空间投影支持向量机的高光谱图像分类方法。方法 首先采用简单线性迭代聚类算法将高光谱图像分割成许多无重叠的同质性区域,将每一个区域作为一个超像元,以超像元作为图像分类的最小单元,利用子空间投影算法对超像元构成的图像进行降维处理,在低维特征空间中执行支持向量机分类。本文高光谱图像空谱综合分类模型,对几何特征空间下的超像元分割与光谱特征空间下的子空间投影支持向量机(SVMsub),采用分割后进行特征融合的处理方式,将像元级别转换为面向对象的超像元级别,实现高光谱图像空谱综合分类。结果 在AVIRIS(airbone visible/infrared imaging spectrometer)获取的Indian Pines数据和Reflective ROSIS(optics system spectrographic imaging system)传感器获取的University of Pavia数据实验中,子空间投影算法比对应的非子空间投影算法的分类精度高,特别是在样本数较少的情况下,分类效果提升明显;利用马尔可夫随机场或超像元融合空间信息的算法比对应的没有融合空间信息的算法的分类精度高;在两组数据均使用少于1%的训练样本情况下,同时融合了超像元和子空间投影的支持向量机算法在两组实验中分类精度均为最高,整体分类精度高出其他相关算法4%左右。结论 利用超像元处理可以有效融合空间信息,降低同物异谱对分类结果的不利影响;采用子空间投影能够将高光谱数据变换到低维空间中,实现有限训练样本条件下的高精度分类;结合超像元和子空间投影支持向量机的算法能够得到较高的高光谱图像分类精度。  相似文献   

6.
目的 地物分类是对地观测研究领域的重要任务。高光谱图像具有丰富的地物光谱信息,可用于提升遥感图像地物分类的准确度。如何对高光谱图像进行有效的特征提取与表示是高光谱图像分类应用的关键问题。为此,本文提出了一种结合倒置特征金字塔和U-Net的高光谱图像分类方法。方法 对高光谱数据进行主成分分析(principal component analysis,PCA)降维,获取作为网络输入的重构图像数据,然后使用U-Net逐层提取高光谱重构图像的空间特征。与此同时,利用倒置的特征金字塔网络抽取相应层级的语义特征;通过特征融合,得到既有丰富的空间信息又有较强烈的语义响应的特征表示。提出的网络利用注意力机制在跳跃连接过程中实现对背景区域的特征响应抑制,最终实现了较高的地物分类精度。结果 分析了PCA降维方法和输入数据尺寸对分类性能的影响,并在Indian Pines、Pavia University、Salinas和Urban数据集上进行了对比实验。本文方法在4个数据集上分别取得了98.91%、99.85%、99.99%和87.43%的总体分类精度,与支持向量机(support vector machine,SVM)等相关算法相比,分类精度高出1%~15%。结论 本文提出一种结合倒置特征金字塔和U-Net的高光谱图像分类方法,可以应用于有限训练样本下的高光谱图像分类任务,并在多个数据集上取得了较高的分类精度。实验结果表明倒置特征金字塔结构与U-Net结合的算法能够高效地实现高光谱图像的特征提取与表示,从而获得更精细的分类结果。  相似文献   

7.
目的 与传统分类方法相比,基于深度学习的高光谱图像分类方法能够提取出高光谱图像更深层次的特征。针对现有深度学习的分类方法网络结构简单、特征提取不够充分的问题,提出一种堆叠像元空间变换信息的数据扩充方法,用于解决训练样本不足的问题,并提出一种基于不同尺度的双通道3维卷积神经网络的高光谱图像分类模型,来提取高光谱图像的本质空谱特征。方法 通过对高光谱图像的每一像元及其邻域像元进行旋转、行列变换等操作,丰富中心像元的潜在空间信息,达到数据集扩充的作用。将扩充之后的像素块输入到不同尺度的双通道3维卷积神经网络学习训练集的深层特征,实现更高精度的分类。结果 5次重复实验后取平均的结果表明,在随机选取了10%训练样本并通过8倍数据扩充的情况下,Indian Pines数据集实现了98.34%的总体分类精度,Pavia University数据集总体分类精度达到99.63%,同时对比了不同算法的运行时间,在保证分类精度的前提下,本文算法的运行时间短于对比算法,保证了分类模型的稳定性、高效性。结论 本文提出的基于双通道卷积神经网络的高光谱图像分类模型,既解决了训练样本不足的问题,又综合了高光谱图像的光谱特征和空间特征,提高了高光谱图像的分类精度。  相似文献   

8.
目的 为了有效提高高光谱图像分类的精度,提出了双重L2稀疏编码的高光谱图像分类方法。方法 首先对高光谱图像进行预处理,充分结合图像的空间信息和光谱信息,利用像元的空间连续性,用L2稀疏编码重建图像中每个像元。针对重建的图像数据,依据L2稀疏编码的最小误差和编码系数实现分类。结果 在公开的数据库AVIRIS高光谱图像上进行验证,分类精度为99.44%,与支持向量机(SVM)、K最近邻(KNN)和L1稀疏编码方法比较,有效地提高了分类的准确性。结论 实验结果表明,提出的方法应用于高光谱图像分类具有较好的分类效果。  相似文献   

9.
目的 光谱解混是高光谱遥感图像处理的核心技术。当图像不满足纯像元假设条件时,传统算法难以适用,基于(单形体)体积最小化方法提供了一种有效的解决途径。然而这是一个复杂的约束最优化问题,更由于图像噪声等不确定性因素的存在,导致算法容易陷入局部解。方法 引入一种群智能优化技术-差分进化算法(DE),借助其较强的全局搜索能力以及优越的处理高维度问题的能力,并通过对问题编码,提出了一种体积最小化的差分进化(VolMin-DE)光谱解混算法。结果 模拟数据和真实数据实验的结果表明,与现有算法相比,该算法在15端元时精度(光谱角距离)可提高7.8%,当端元数目少于15个时,其精度普遍可以提高15%以上,特别是10端元时精度可以提高41.3%;在20~50 dB的噪声范围内,精度变化在1.9~3.2(单位:角度)之间,传统算法在2.2~3.5之间,表明该算法具有相对较好的噪声鲁棒性。结论 本文算法适用于具有纯像元以及不存在纯像元(建议最大纯度不低于0.8)这两种情况的高光谱遥感图像,并可在原始光谱维度进行光谱解混,从而避免降维所带来的累计误差,因此具有更好的适应范围和应用前景。  相似文献   

10.
目的 高光谱影像压缩的关键技术是对空间维和光谱维的去相关性。根据高光谱影像数据结构的特点,如何有效去除其空间相关性与谱间相关性是高光谱影像压缩中至关重要的问题。对高光谱影像进行编码时,3维小波变换是极为有效的去除冗余的方法。因此提出了一种通过波段排序并结合3维混合树型结构对高光谱影像3维小波变换系数进行编码的算法。方法 首先,将高光谱影像按照自然波段顺序进行波段分组,并对每组影像进行相邻影像的谱间相关性统计;其次,对相关性较弱的波段组,建立以影像波段序号为顶点、影像相关性系数为边的完全图,对这个完全图求其最大汉密尔顿回路。按照求得的最大汉密尔顿回路顺序对该波段组进行重新排序,从而提高波段组的谱间相关性;在此基础上,对重新排序后的波段组进行3维小波变换,并通过3维混合树结构对3维小波变换系数进行零树编码。结果 通过对大量AVIRIS型高光谱影像数据的仿真实验,验证了本文方法的有效性。对相关性较低的波段组,加入排序算法后,其解码影像与未排序时比,峰值信噪比有了一定的提高。通过实验统计,算法平均用时2.7579s。结论 由于采用了对弱相关性波段组的重新排序机制,使得基于混合树结构的3维零树编码出现了更多有效的零树,在一定程度上提高了编码效率。通过实验统计算法用时,表明该方法以较小的时间代价获得了解码效果的提升。  相似文献   

11.
目的 高光谱遥感影像数据包含丰富的空间和光谱信息,但由于信号的高维特性、信息冗余、多种不确定性和地表覆盖的同物异谱及同谱异物现象,导致高光谱数据结构呈高度非线性。3D-CNN(3D convolutional neural network)能够利用高光谱遥感影像数据立方体的特性,实现光谱和空间信息融合,提取影像分类中重要的有判别力的特征。为此,提出了基于双卷积池化结构的3D-CNN高光谱遥感影像分类方法。方法 双卷积池化结构包括两个卷积层、两个BN(batch normalization)层和一个池化层,既考虑到高光谱遥感影像标签数据缺乏的问题,也考虑到高光谱影像高维特性和模型深度之间的平衡问题,模型充分利用空谱联合提供的语义信息,有利于提取小样本和高维特性的高光谱影像特征。基于双卷积池化结构的3D-CNN网络将没有经过特征处理的3D遥感影像作为输入数据,产生的深度学习分类器模型以端到端的方式训练,不需要做复杂的预处理,此外模型使用了BN和Dropout等正则化策略以避免过拟合现象。结果 实验对比了SVM(support vector machine)、SAE(stack autoencoder)以及目前主流的CNN方法,该模型在Indian Pines和Pavia University数据集上最高分别取得了99.65%和99.82%的总体分类精度,有效提高了高光谱遥感影像地物分类精度。结论 讨论了双卷积池化结构的数目、正则化策略、高光谱首层卷积的光谱采样步长、卷积核大小、相邻像素块大小和学习率等6个因素对实验结果的影响,本文提出的双卷积池化结构可以根据数据集特点进行组合复用,与其他深度学习模型相比,需要更少的参数,计算效率更高。  相似文献   

12.
目的 随着高光谱成像技术的飞速发展,高光谱数据的应用越来越广泛,各场景高光谱图像的应用对高精度详细标注的需求也越来越旺盛。现有高光谱分类模型的发展大多集中于有监督学习,大多数方法都在单个高光谱数据立方中进行训练和评估。由于不同高光谱数据采集场景不同且地物类别不一致,已训练好的模型并不能直接迁移至新的数据集得到可靠标注,这也限制了高光谱图像分类模型的进一步发展。本文提出跨数据集对高光谱分类模型进行训练和评估的模式。方法 受零样本学习的启发,本文引入高光谱类别标签的语义信息,拟通过将不同数据集的原始数据及标签信息分别映射至同一特征空间以建立已知类别和未知类别的关联,再通过将训练数据集的两部分特征映射至统一的嵌入空间学习高光谱图像视觉特征和类别标签语义特征的对应关系,即可将该对应关系应用于测试数据集进行标签推理。结果 实验在一对同传感器采集的数据集上完成,比较分析了语义—视觉特征映射和视觉—语义特征映射方向,对比了5种基于零样本学习的特征映射方法,在高光谱图像分类任务中实现了对分类模型在不同数据集上的训练和评估。结论 实验结果表明,本文提出的基于零样本学习的高光谱分类模型可以实现跨数据集对分类模型进行训练和评估,在高光谱图像分类任务中具有一定的发展潜力。  相似文献   

13.
苏俊英 《遥感信息》2012,27(3):15-19,59
提出了一种基于高光谱曲线小波分形测度的高光谱影像多尺度分形维特征分析方法。对高光谱影像的光谱响应曲线的小波域高频和低频系数统计特性、分形特征进行了分析,提出以小波低频分形维表征原始光谱曲线分形特征,以小波系数高频分形维表征高光谱细节特征方法,设计了基于高光谱曲线小波分形维的多尺度特征计算算法,实验结果表明,小波分形维值可有效表征丰富的光谱特征,可用于高光谱影像特征提取和分类。  相似文献   

14.
高光谱影像光谱响应曲线分维计算   总被引:3,自引:1,他引:2  
高光谱影像光谱响应曲线包含丰富的光谱特征,分形维值可以表征复杂光谱响应曲线特征,提出了步长测量法光谱响应曲线分形维值计算算法及高光谱分形特征影像的生成流程,对OMIS影像上不同类型地物样本的光谱曲线分维特征计算结果表明,分维是一种有效表达像元光谱信息的特征值。讨论了光谱响应曲线分维值对于高光谱数据处理的意义。  相似文献   

15.
PCA与移动窗小波变换的高光谱决策融合分类   总被引:1,自引:0,他引:1       下载免费PDF全文
目的 高光谱数据具有较高的谱间分辨率和相关性,给分类处理带来了一定的困难.为了提高分类精度,提出一种结合PCA与移动窗小波变换的高光谱决策融合分类算法.方法 首先,利用相关系数矩阵对原始高光谱数据进行波段分组;然后,利用主成分分析对每组数据进行谱间降维;再根据提出的移动窗小波变换法进行空间特征提取;最后,采用线性意见池(LOP)决策融合规则对多分类器的分类结果进行融合.结果 采用两组来自不同传感器的数据进行实验,所提算法的分类精度和Kappa系数均高于已有的5种分类算法.与SVM-RBF算法相比,本文算法的分类精度高出了8%左右.结论 实验结果表明,本文算法充分挖掘了高光谱图像的谱间-空间信息,能有效提高分类正确率,在小样本情况下和噪声环境中也具有良好的分类性能.  相似文献   

16.
Broom snakeweed (Gutierrezia sarothrae (Pursh) Britt. & Rusby) is one of the most widespread and abundant rangeland weeds in western North America. The objectives of this study were to evaluate airborne hyperspectral imagery and compare it with aerial colour-infrared (CIR) photography and multispectral digital imagery for mapping broom snakeweed infestations. Airborne hyperspectral imagery along with aerial CIR photographs and digital CIR images was acquired from a rangeland area in south Texas. The hyperspectral imagery was transformed using minimum noise fraction (MNF) and then classified using minimum distance, Mahalanobis distance, maximum likelihood, and spectral angle mapper (SAM) classifiers. The digitized aerial photographs and the digital images were respectively mosaicked as one photographic image and one digital image; these were then classified using the same classifiers. Accuracy assessment showed that the maximum likelihood classifier performed the best for the three types of images. The best overall accuracies for three-class classification maps (snakeweed, mixed woody and mixed herbaceous) were 91.0%, 92.5%, and 95.0%, respectively, for the CIR photographic image, the digital CIR image and the MNF-transformed hyperspectral image. Kappa analysis showed that there were no significant differences in maximum likelihood-based classifications among the three types of images. These results indicate that airborne hyperspectral imagery along with aerial photography and multispectral imagery can be used for monitoring and mapping broom snakeweed infestations on rangelands.  相似文献   

17.
Ashe juniper (Juniperus ashei Buchholz) in excessive coverage reduces forage production, interferes with livestock management, and degrades watersheds and wildlife habitat on infested rangelands. The objective of this study was to apply minimum noise fraction (MNF) transformation and different classification techniques to airborne hyperspectral imagery for mapping Ashe juniper infestations. Hyperspectral imagery with 98 usable bands covering a spectral range of 475–845 nm was acquired from two Ashe juniper infested sites in central Texas. MNF transformation was applied to the hyperspectral imagery and the transformed imagery with the first 10 and 20 MNF bands was classified using four hard classifiers: minimum distance, Mahalanobis distance, maximum likelihood and spectral angle mapper (SAM). For comparison, the 10‐ and 20‐band MNF imagery was inversely transformed to noise‐reduced 98‐band imagery in the original data space, which was also classified using the four classifiers. Accuracy assessment showed that the first 10 MNF bands were sufficient for distinguishing Ashe juniper from associated plant species (mixed woody species and mixed herbaceous species) and other cover types (bare soil and water). Although the 20‐band MNF imagery provided better results for some classifications, the increase in overall accuracy was not statistically significant. Overall accuracy on the 10‐band MNF imagery varied from 88% for SAM to 93% for minimum distance for site 1 and from 84% for SAM to 94% for maximum likelihood for site 2. The 98‐band imagery derived from the 10‐band MNF imagery resulted in overall accuracy ranging from 91% for both SAM and Mahalanobis distance to 97% for maximum likelihood for site 1 and from 87% for SAM to 93% for minimum distance for site 2. Although both approaches produced comparable classification results, the MNF imagery required smaller storage space and less computing time. These results indicate that airborne hyperspectral imagery incorporated with image transformation and classification techniques can be a useful tool for mapping Ashe juniper infestations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号