首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
聚类分析是一种有效的异常入侵检测方法,本文提出基于模糊C-均值聚类的网络入侵检测算法。用KDD Cup1999数据集的仿真试验结果表明算法的可行性、有效性和扩展性,并有效提高了聚类检测的检测率,降低了误报率。  相似文献   

2.
聚类分析是一种有效的异常入侵检测方法,本文提出基于模糊C-均值聚类的网络入侵检测算法。用KDD Cup 1999数据集的仿真试验结果表明算法的可行性、有效性和扩展性,并有效提高了聚类检测的检测率,降低了误报率。  相似文献   

3.
随着网络技术迅猛发展,网络安全问题也备受关注。入侵检测技术能够通过检测网络攻击行为来及时阻止网络攻击行为。近年来,聚类分析作为无监督入侵检测算法的代表受到了广泛地应用和研究,本文概述了网络入侵检测的相关内容及聚类分析在网络入侵检测中的应用。  相似文献   

4.
刘琰琼  张文生  李益群  杨柳 《计算机工程》2011,37(5):207-209,212
传统聚类方法处理的是同构数据,无法满足异构数据同时聚类的应用需求,聚类结果的准确率较低,标签可读性较差。针对上述问题,提出一种基于电阻网络的异构数据协同聚类算法。该算法将异构关联数据抽象为多部图形式的电阻网络,进行特征计算及聚类。在对异构数据进行协同聚类后,可以得到一种聚类结构,其中每一类包含多种异构数据,它们之间可以互为标签,标签可读性高。实验结果证明,该方法是一种切实可行且效果优异的数据聚类算法。  相似文献   

5.
聚类算法在网络入侵检测中的应用   总被引:18,自引:1,他引:18  
向继  高能  荆继武 《计算机工程》2003,29(16):48-49,185
分析了目前的入侵检测技术,提出了使用聚类算法进行网络入侵检测的方法,并通过试验说明了该方法的应用效果。  相似文献   

6.
本文结合决策树分类思想和蚁群聚类思想,提出了一种由决策树和蚁群算法相结合的多级混合分类器,即对算法C4.5改进的树分类器以及对混合数据运用蚁群聚类算法来区分哪些是正常的入侵行为两种技术相结合的方法,并且对攻击数据类型进行分层,第一层为正常数据,第二层为其他数据,第三层为特殊数据。实验表明,这种新方法在入侵检测时是非常有效的,它的误报率非常低,同时也维持一个相对可以接受的误警率,还可以合适的发现未知的入侵检测从而提高入侵检测率。  相似文献   

7.
基于聚类免疫网络的协同过滤推荐算法   总被引:1,自引:0,他引:1       下载免费PDF全文
针对传统协同过滤推荐算法进行聚类后出现的推荐精度下降问题,提出了一种利用独特型网络模型对基于用户聚类的协同过滤算法加以改进的新思路。通过引入人工免疫中动态调节抗体浓度使免疫网络保持稳定的原理来调整邻居用户的数目,以保证邻居用户的多样性达到提高精度的目的。实验结果表明,该算法相对于传统的基于聚类的协同过滤算法而言,在提高推荐速度的同时保证了推荐的精度。  相似文献   

8.
提出了一种基于改进线性判别分析和近邻法的网络入侵聚类方法,运用改进的线性判别分析方法对网络入侵样本特征进行降维处理,使用近邻分类器对数据进行聚类。该算法降低了算法的聚类时间,还提高了算法的聚类能力。实验结果表明,相比其他模型,该算法有较高的检测率和较低的误警率。  相似文献   

9.
为了将语义信息用于文本聚类和有效地进行特征选择,文中提出一种基于协同聚类的两阶段文本聚类方法.该方法分别对文档和特征进行聚类从而得到特征与主题之间的语义关联关系.然后利用此关系来相互调整彼此的聚类结果.实验结果表明,利用特征与主题之间的语义关联关系能有效提高聚类效果.  相似文献   

10.
张喆  白琳 《计算机应用》2007,27(1):128-131
将免疫克隆策略用于网络结构的聚类中,能够得到克隆网络对数据进行合理的聚类分析。采用克隆网络对入侵检测数据进行学习,即用一个小规模网络来表示海量数据,完成数据的压缩表示。再利用图论中的最小生成树对克隆网络的结构进行聚类分析,从而获得描述正常行为和异常行为的数据特征,实现合理的聚类。该算法可实现对大规模无标识原始数据的入侵检测,区分正常和异常行为,并能检测到未知攻击。在KDD CUP99数据集中进行了对比仿真实验,实验结果表明:相对于以前的算法,该算法较大地提高了对已知攻击和未知攻击的入侵检测率,并降低了误警率。  相似文献   

11.
基于特征选择的网络入侵检测模型   总被引:5,自引:0,他引:5  
研究网络安全问题,网络入侵手段多样,特征多,存在大量不利的冗余特征,传统网络入侵检测不考虑特征冗余,检测效率和正确论低。为更一步提高了网络安全,提出一种特征选择的网络入侵检测模模型。采用粒子群算法对网络系统状态特征和支持向量机参数进行同步选择,找到最优网络入侵检测模型特征和模型参数,降低了模型的输入样本维数。仿真结果表明,改进算法可降低特征维数,消除了不利于提高检测结果的冗余特征,并提高了网络入侵检测正确率,适合于小样本、实时要求高的网络入侵检测。  相似文献   

12.
计算机网络的安全在当今社会起着举足轻重的作用。该文将基于分类器选择的模式识别方法应用于入侵检测,提出了一种基于静态分类器选择的网络入侵检测方法。该方法对经过聚类获得的各个区域采用新的策略进一步划分,在划分后的子区域上选择分类器,结合了最近邻规则,减小静态分类器选择方法的误差,提高了检测性能。聚类选择(CS)是典型的静态分类器选择方法,在KDD’99的入侵检测数据集上的实验表明,该方法的性能优于基于聚类选择的网络入侵检测方法。  相似文献   

13.
基于k最近邻网络的数据聚类算法   总被引:1,自引:0,他引:1  
聚类研究在数据挖掘研究领域中占有十分重要的地位。虽然目前已有很多数据聚类算法,但精度仍不够理想。文中提出一个基于结构化相似度的网络聚类算法(SSNCA),试图从网络聚类角度进一步提高数据聚类精度。具体解决方案是,将待聚类的向量数据集转化为k最近邻网络,并用SSNCA对该网络进行聚类。将SSNCA与c-Means、仿射传播进行比较,实验表明文中算法得到的目标函数稍差,但聚类精度要明显高于这两个算法。  相似文献   

14.
网络入侵特征优化检测方法仿真   总被引:1,自引:0,他引:1  
网络入侵特征的伪装程度越来越高,使得入侵特征与正常数据特征在分类效果上的倾斜度越来越接近.传统的采用特征分类的入侵检测方法对训练入侵特征数据集的最佳类分布未知,都是假定误分类代价均等,只注重分类的精度敏感,忽视了类型间的区别,造成入侵检测不准.提出了一种敏感性数据挖掘的网络入侵特征检测算法.利用主成分分析方法,提取网络操作数据中的主成分,去除冗余数据,将网络入侵特征的敏感性引入到检测过程中,利用敏感性数据挖掘方法,获取网络操作数据中的恶意入侵操作行为的特征,从而完成网络入侵特征检测.实验结果表明,利用改进算法进行网络入侵特征优化检测,能够准确获取网络操作行为中的异常特征.  相似文献   

15.
在供应链协同计划中,以供应链整体最优为目标做出的决策有可能引发个体理性和集体理性冲突。针对该问题,在研究供应链协同计划时引入冲突检测方法,建立供应链协同计划冲突检测模型,采用Agent协商技术对检测到的冲突进行消解。仿真实例说明,在供应链协同计划中引入冲突检测方法能及时发现供应链中存在的冲突,有助于提高供应链协同计划的效率和科学性。  相似文献   

16.
综合理解视频内容和文本语义在很多领域都有着广泛的研究。早期的研究主要是将文本-视频映射到一个公共向量空间,然而这种方法所面临的一个问题是大规模文本-视频数据集不足。由于视频数据存在较大的信息冗余,直接通过3D网络提取整个视频特征会使网络参数较多且实时性较差,不利于执行视频任务。为了解决上述问题,文中通过良好的聚类网络聚合视频局部特征,并可以同时利用图像和视频数据训练网络模型,有效地解决了视频模态缺失问题,同时对比了人脸模态对召回任务的影响。在聚类网络中加入了注意力机制,使得网络更加关注与文本语义强相关的模态,从而提高了文本-视频的相似度值,更有利于提高模型的准确率。实验数据表明,基于聚类网络的文本-视频特征学习可以很好地将文本-视频映射到一个公共向量空间,使具有相近语义的文本和视频距离较近,而不相近的文本和视频距离较远。在MPII和MSR-VTT数据集上,基于文本-视频召回任务来测评模型的性能,相比其他模型,所提模型在两个数据集上进行精度均有提升。实验数据表明,基于聚类网络的文本-特征学习可以很好地将文本-视频映射到一个公共向量空间,从而用于文本-视频召回任务。  相似文献   

17.
随着网络的高速发展,网络信息安全问题不断暴露出来。本文主要对入侵检测系统中的网络入侵检测系统(NIDS)的进行分析,对网络入侵的各模块都进行了分析,并分析了系统的优缺点和发展趋势。  相似文献   

18.
基于知识约简的网络入侵特征提取   总被引:2,自引:0,他引:2       下载免费PDF全文
为改善入侵检测系统的性能,提出一种基于知识约简的特征提取方法,根据粗糙集理论给出入侵检测系统的形式化描述,使用知识约简提取属性特征,通过信息损耗和信息增益分别控制连续数值属性特征的离散化和属性特征的约简过程。实验结果证明,该方法可有效消除初始数据中的冗余信息和数据噪声。  相似文献   

19.
针对稀疏子空间聚类(SSC)求得的系数矩阵过于稀疏和最小二乘回归子空间聚类(LSR)求得的系数矩阵过于稠密的问题,文中提出基于协同表示的子空间聚类算法(SCCR).结合SSC和LSR的优点,将l1范数和Frobenius范数引入同一优化问题中,使系数矩阵保证在同一子空间数据点联系(如LSR)的同时,消除不同子空间数据点之间的联系(如SSC).然后利用此系数矩阵建立相似矩阵,应用谱聚类得到聚类结果.实验表明SCCR可以提高聚类性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号