首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
改进的局部稀疏表示分类算法及其在人脸识别中的应用   总被引:1,自引:0,他引:1  
近年来,稀疏表示分类(Sparse Representation Based Classification,SRC)方法在人脸识别中受到越来越多的关注。原始SRC方法使用所有的训练样本组成字典矩阵,当训练样本比较多时,稀疏系数的求解会变得非常耗时。为了解决这一问题,提出一种新的局部稀疏表示分类(Local SRC,LSRC)方法。该方法针对每个测试样本,根据测试样本和训练样本稀疏系数之间的相似性来选择部分训练样本,由这些训练样本组成字典,然后在这个字典上对测试样本进行稀疏分解。该方法性能相比于原始LSRC方法更稳定。在ORL、Yale和AR人脸库上的实验结果表明,该方法的效果优于SRC和LSRC。  相似文献   

2.
针对复杂环境下人脸识别难度大的问题,提出了一种熵权法融合局部Gabor特征方法。计算类熵加权向量;计算局部归一化输入图像的Borda计数矩阵,从而消除低值Gabor jet比较矩阵;通过将分数层类熵加权Gabor特征与LGBP和LGXP融合解决了完成人脸的识别。在FERET、AR和FRGC 2.0人脸数据库上的实验结果表明,该方法对轻微姿态变化具有显著鲁棒性,并且对人眼检测中高达3像素的误差具有鲁棒性,相比其他几种人脸识别方法,该方法取得了更好的识别效果。  相似文献   

3.
目前的人脸识别算法经常忽视训练过程中噪声的影响,训练数据受到污染时识别性能会明显下降.针对该问题,提出了融合整体与局部特征的低秩松弛协作表示的人脸识别算法.通过低秩分解抑制训练样本的稀疏噪声,得到更加有效的人脸信息.利用松弛协作表示得到判别性更强的编码系数,增强人脸识别系统的判别性.为进一步提高识别率,提取局部特征的同时引入整体特征,运用整体特征和局部特征共同表示人脸图像.实验结果表明,尽管训练过程、测试过程都受到噪声污染,提出的算法对有光照、遮挡及表情变化的正面人脸图像的识别具有很好的鲁棒性,比现有的识别算法拥有更高的识别率.  相似文献   

4.
人脸识别在实际应用中,往往存在无法获取足够多的训练样本的情况,而在小样本情况下,协作表示的识别性能会受到严重影响。多尺度块协作表示算法能有效集成不同尺度下的分类结果,但其分类框架中子块的计算是相互独立的,忽略了块之间的结构关系。而局部结构法将图像划分为多个局部区域,每个局部区域的重叠块分布在相同的线性子空间中,该子空间可以反应块之间的结构关系,能提高多尺度块协作表示在小样本下的鲁棒性。因此提出了基于局部结构的多尺度块协同表示算法(Local Structure based Multi-Patch Collaborative Representation,LS_MPCRC),在Yale B和AR人脸库上的实验结果证明,该算法在训练样本数目较少时具有优秀的识别性能。  相似文献   

5.
提出一种可预测判别K-SVD网络模型(DKSVDN)并用于人脸识别问题。该模型构造了一种新颖的字典结构,包含类别标签字典和描述字典,以兼顾判别和重构性能。相应的稀疏编码向量由标签编码向量和描述编码向量组成。针对样本稀疏编码时间效率低的问题,利用预测神经网络与判别字典学习模型协同训练的方法来加速预测稀疏编码。此外,针对DKSVDN还特别引入一种拟梦境的训练方法用于提升模型在训练集多样性不足时的鲁棒性。通过在主流人脸数据集上的对比实验证明了该模型的优良性能。  相似文献   

6.
针对人脸识别中的图像存在噪声等情况,提出基于鉴别性低秩表示及字典学习的算法。使用鉴别性低秩子空间恢复算法(discriminative low-rank representation, DLRR)获得类别间尽可能独立且干净的训练样本,然后通过引入基于Fisher准则的字典学习(Fisher Discrimination Dictionary Learning, FDDL)方法得到结构化字典,其子字典对对应的类有较好的表示能力,约束编码系数具有较小类内散列度和较大类间散列度。最后对测试样本稀疏线性表示时正确类别的样本贡献更大。在标准人脸数据库上的实验结果表明该算法有较好性能。  相似文献   

7.
基于稀疏表示的分类方法SRC与基于协同表示的分类方法 CRC分别通过L1范数和L2范数最小化获得具有稀疏性的线性表示系数,在人脸识别中取得了很好的效果。为了解决这两种方法没有考虑数据局部信息的问题,提出了基于局部表示的分类方法 LRC。LRC使用测试样本局部范围内的训练样本对其进行线性表示,这样获得的局部表示系数在保持稀疏性的同时包含有效的局部信息。另外,通过求解一简单的约束最优化问题,LRC可快速获取局部表示系数。在ORL、YALE以及FERET人脸数据库上的实验结果,表明了LRC的有效性和高效性。  相似文献   

8.
在人脸识别中,如何消除光照、表情、遮挡等不利因素的影响,提高识别的鲁棒性是当前急需解决的热点研究问题。本文提出了一种基于小波变换和稀疏表征的鲁棒人脸识别方法,首先对人脸图像进行小波变换,将变换得到的4个子带LL、LH、HL、HH作为基函数构成字典;然后将测试图像的LL子带在字典上稀疏分解;最后依据重构残差最小原则进行分类识别。在Yale人脸库上的实验结果表明该方法性能优于对比方法。  相似文献   

9.
局部坐标稀疏表示可以使测试样本由其近邻样本线性近似表示,借鉴此思想,在稀疏表示模型中引入局部距离加权并添加非负约束,求解得到测试样本在训练集上的表示系数,根据表示系数的大小剔除训练集中的噪声点,在新的训练集上进行最小二乘子空间分类。在6个基因表达数据集上的实验结果表明,所提算法可以进一步改善分类质量。  相似文献   

10.
如今,人脸表情的相关研究是非常热门的话题,研究者愈发的关注其相关分类算法.而提高分类的精度对人工智能等相关前沿领域具有实际的应用价值.目前图像分类的方法层见叠出,其中较为经典的有线性判别分析和稀疏表示等.针对图像分类计算复杂度高,特征利用率以及分类精度等相关问题,本文提出了一种改进的协作表示分类算法.首先采用分块加权局...  相似文献   

11.
针对人脸图像不完备的问题和人脸图像在不同视角、光照和噪声下所造成训练样本污损的问题,提出了一种快速的人脸识别算法--RPCA_CRC。首先,将人脸训练样本对应的矩阵D0分解为类间低秩矩阵D和稀疏误差矩阵E;其次,以低秩矩阵D为基础,得到测试样本的协同表征;最后,通过重构误差进行分类。相对于基于稀疏表征的分类(SRC)方法,所提算法运行速度平均提高25倍;且在训练样本数不完备的情况下,识别率平均提升30%。实验证明该算法快速有效,识别率高。  相似文献   

12.
近年来,基于表示的人脸图像识别方法吸引了众多学者的关注,如稀疏表示分类方法(Sparse Representation based Classification,SRC)、协作表示方法(Collaborative Representation based Classification,CRC)等。这些方法均利用单张图像的表示信息进行识别,而忽略了集体图像之间的关联性,容易存在信息不足的缺陷。为了能够充分利用多张人脸图像的相互关系,提出了一类集体表示分类方法。该方法将多张待识别图像映射为一个稀疏表示矩阵,并对每类测试图像集体重构,以最小残差为准则对每类人脸图像集分类。这种方法通过同时表示多张图像,关注到不同图像之间的相似与不同,获取到同一主体的更多信息,从而提高识别正确率。尤其在只有多张侧脸图像而无正脸图像的情况下,集体表示分类方法更能发挥优势,在两个公开人脸图像数据集上的实验结果也验证了该方法的有效性。  相似文献   

13.
李燕  章玥 《计算机工程与科学》2018,40(11):2015-2022
针对人脸识别中的光照变化问题,利用随机投影对传统稀疏表示分类器进行改进,提出一种基于随机投影与加权稀疏表示残差的光照鲁棒人脸识别方法。通过对人脸图像进行光照规范化处理,尽量消除人脸图像上的恶劣光照,取得经光照校正的人脸样本后进行多次随机空间投影,进一步丰富样本的光照不变特征,以减小光照变化对人脸识别带来的影响。在此基础上,对利用单一残差分类的传统稀疏表示分类方法进行改进,样本经过多次随机投影和稀疏表示会产生多个样本特征和重构残差,利用样本特征的能量来确定各个重构残差的融合权值,最终得到一种稳定性和可靠性更强的加权残差。在 Yale B 和 CMU PIE 两个光照变化较大的人脸库上的实验结果表明,改进的方法具有较强的光照鲁棒性。与传统稀疏表示方法相比,本文提出的方法在Yale B人脸库上两组实验的平均识别率分别提高了25.76%和46.39%,在CMU PIE上的平均识别率提高了10%左右。  相似文献   

14.
经典的稀疏表示分类(Sparse Representation for Classification,SRC)算法是一种基于[L1]范数最小化问题,它在很多应用场合都能取得很好的分类效果,是目前备受关注的一类识别算法。然而,传统的SRC算法在求解[L1]范数最小化问题时,往往计算效率比较低。为有效解决这个问题,提出了一种快速有效的分类算法,它利用坐标下降方法来实现SRC算法。该方法既可以显著地提高计算效率,又可取得较好的分类结果。在不同人脸库上的实验表明,所提的算法具有良好的应用前景。  相似文献   

15.
稀疏表示和贪婪搜索的人脸分类   总被引:2,自引:1,他引:2       下载免费PDF全文
目的 随着稀疏表示方法在图像重建问题中的巨大成功,研究人员提出了一种特殊的分类方法,即基于稀疏表示的分类方法.为了加强样本间的协作表示能力以及减弱稀疏分解时的强L1约束,提出了一种在稀疏分类框架下的迭代剔除机制和贪婪搜索策略的人脸识别方法.方法 将测试样本表示成训练样本线性组合的方式,并在所有训练样本中通过迭代计算来消除对分类影响较小的类别和单个样本,在系数分解的过程中采用最小误差正交匹配追踪(EcOMP)算法,进而选择出贡献程度大的类别样本并进行分类.结果 在迭代更新样本字典的过程中,强化了真实类别的表示能力,并弱化了分解系数的强L1约束.在所有的实验中,正则化参数λ的取值为0.001,在ORL、FERET和AR 3个人脸数据库上,本文算法的识别率可分别达到97.88%、67.95%和94.50%,进而验证了本文算法的有效性.结论 提出的在稀疏分类框架下的迭代剔除机制和贪婪搜索策略的人脸识别方法,在动态迭代的机制中完成了样本字典的更新,平衡了协作表示和稀疏约束的关系,相比较原始的稀疏分类模型有更好的准确性和稳定性.  相似文献   

16.
苏宝莉 《计算机应用》2013,33(6):1677-1681
针对图嵌入方法在构造邻域关系图的过程中,简单地将样本数据划入某一类的做法并不妥当的问题,提出了模糊渐进的隶属度表示方法。该方法借助模糊数学的思想,通过模糊渐进的隶属度,将样本归属于不同类别。针对图嵌入方法中分类器效率偏低的问题,引入了协作表示分类方法,该分类方法大幅度提高了算法的计算效率。基于这两点,提出了基于协作表示和模糊渐进最大边界嵌入的特征抽取算法。在ORL、AR人脸数据库上,以及USPS数字手写体数据库上的实验表明,该算法优于主成分分析(PCA)、线性鉴别分析(LDA)、局部保留投影(LPP)和边界Fisher分析(MFA)。  相似文献   

17.
基于稀疏表示的人脸识别研究,非线性特征的选择研究较少。提出分层使用人脸图像的小波特征,进行稀疏表示人脸识别框架。框架首先对样本人脸进行小波变换,构造小波低频和小波高频过完备人脸字典;识别阶段首先使用人脸图像的小波低频特征进行稀疏表示,计算类别模糊稀疏,然后根据模糊系数输出类别标签或进行高频特征的稀疏表示与识别。实验结果表明,基于小波特征和稀疏表示的人脸识别分层框架提高了识别的准确率,且对遮挡很鲁棒。  相似文献   

18.
针对以往基于表示的分类(RBC)方法在类别数较多的数据集上性能不佳的问题,提出了一种自适应多阶段线性重构表示的分类(MPRBC)方法。在每一阶段,首先得到L1范数或L2范数正则化的重构表示系数,然后将表示系数按类求和,根据和的大小来选取相似类,并保留相似类中的全部样本作为下一阶段的训练样本。该策略最终产生具有高分类置信度的稀疏类概率分布,根据类系数的大小自适应选择相似的类,提高了分类计算的效率。实验结果表明,该方法分类性能优于其他RBC方法,特别是在类别数较多的数据集上性能提升明显,并且CPU时间保持相对较低水平。  相似文献   

19.
将协同表示方法应用于步态识别中可以解决稀疏表示方法计算耗时的问题,但提取步态特征采用的GEI算法没有考虑步态内部轮廓边界信息,导致识别率不高。针对此问题,本文提出使用融合Hog和GEI算法的方法提取步态特征,在此基础上使用协同表示的方法训练,再通过计算测试样本的最小重构误差进行分类。实验结果表明,该方法在单一视角下步态识别准确率平均提高了1.315%,以及跨视角下步态识别准确率平均提高了6.51%,说明本方法是可行的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号