首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
针对常规图像超分辨率重建方法应用于低照度环境下的图像时存在纹理信息丢失、颜色偏移失真和重建性能退化等问题,提出了一种颜色恢复和边缘保持的低照度图像超分辨率重建方法。在锚定邻域回归(ANR)的图像超分辨率重建方法基础上引入颜色恢复和边缘保持的照度增强函数,从而提高图像内容和边缘纹理的显著性;选择最小加权二乘滤波作为中心环绕函数(WLS)以抑制高频特征退化;同时针对YCbCr颜色空间的Y通道分量采用边缘保持的照度增强函数计算其反射分量,进一步增强边缘纹理特征。实验结果表明,所提方法获得了更好的视觉效果,相比于其他方法,该方法峰值信噪比(PSNR)提高了63.15%,结构相似度(SSIM)分别提高了46.86%,感知质量(PI)提高了4.12%。  相似文献   

2.
目的 深度图像作为一种普遍的3维场景信息表达方式在立体视觉领域有着广泛的应用。Kinect深度相机能够实时获取场景的深度图像,但由于内部硬件的限制和外界因素的干扰,获取的深度图像存在分辨率低、边缘不准确的问题,无法满足实际应用的需要。为此提出了一种基于彩色图像边缘引导的Kinect深度图像超分辨率重建算法。方法 首先对深度图像进行初始化上采样,并提取初始化深度图像的边缘;进一步利用高分辨率彩色图像和深度图像的相似性,采用基于结构化学习的边缘检测方法提取深度图的正确边缘;最后找出初始化深度图的错误边缘和深度图正确边缘之间的不可靠区域,采用边缘对齐的策略对不可靠区域进行插值填充。结果 在NYU2数据集上进行实验,与8种最新的深度图像超分辨率重建算法作比较,用重建之后的深度图像和3维重建的点云效果进行验证。实验结果表明本文算法在提高深度图像的分辨率的同时,能有效修正上采样后深度图像的边缘,使深度边缘与纹理边缘对齐,也能抑制上采样算法带来的边缘模糊现象;3维点云效果显示,本文算法能准确区分场景中的前景和背景,应用于3维重建等应用能取得较其他算法更好的效果。结论 本文算法普遍适用于Kinect深度图像的超分辨率重建问题,该算法结合同场景彩色图像与深度图像的相似性,利用纹理边缘引导深度图像的超分辨率重建,可以得到较好的重建结果。  相似文献   

3.
在MAP超分辨率图像重建算法中,用Huber-Markov随机场(HMRF)作为图像的先验模型相比于Gaussian-Markov随机场(GMRF)能够更好地保护图像的边缘和细节.在以往的研究中,对于如何选取Huber函数的阈值参数T并没有一个很好的方法.本文提出了一种自适应的MAP超分辨率重建算法,该算法可以自动确定参数T,并根据重建的中间结果,不断对其进行更新,通过迭带最终得到重建图像.实验结果表明,该方法实现了参数的自动选取,在得到期望的高分辨率图像的同时,有效地保护了图像的边缘信息和细节.  相似文献   

4.
李翊凡 《福建电脑》2010,26(11):94-95
为了从低分辨率图像中获取高分辨率图像,本文提出了一种基于边缘自适应插值的超分辨率重建算法。首先,对低分辨率图像进行双线性插值并对插值后的图像进行边缘检测;然后,插值图像的边缘通过两种途径得以优化:一种是利用低分辨率协方差与高分辨率协方差之间的几何对偶性;另一种是利用图像的局部结构特征。实验表明,该算法比传统的线性插值方法更能提高图像的重建效果。  相似文献   

5.
图像超分辨率重建技术对于输入的低分辨率图像进行相关处理,从而重构出高分辨率图像,该技术已经成为图像处理研究领域的一个热点方向。对超分辨率图像重建的研究进展进行了综述。阐述了图像超分辨率重建的基本原理。对基于重建的图像超分辨重建中:IBP,POCS等算法,基于学习的图像超分辨率重建中:稀疏表示,基于深度神经网络等算法及一些相关改进的算法进行了综述。对图像超分辨率重建的研究提出了展望。  相似文献   

6.
超分辨率图像重建方法研究   总被引:1,自引:0,他引:1  
超分辨率图像重建就是由低分辨率图像序列来估计高分辨率图像,已成为当前研究的热点。对超分辨率的概念和应用场合进行了阐述,对空域的几种主要重建方法进行了详尽分析与比较,并研究了压缩域中的重建方法,指出了各自的优点与不是。研究表明,超分辨率重建具有广泛的应用前景,其成像模型、运动估计、重建算法和实时实现将是今后研究的重点。  相似文献   

7.
目的 针对基于学习的图像超分辨率重建算法中存在边缘信息丢失、易产生视觉伪影等问题,提出一种基于边缘增强的深层网络模型用于图像的超分辨率重建。方法 本文算法首先利用预处理网络提取输入低分辨率图像的低级特征,然后将其分别输入到两路网络,其中一路网络通过卷积层级联的卷积网络得到高级特征,另一路网络通过卷积网络和与卷积网络成镜像结构的反卷积网络的级联实现图像边缘的重建。最后,利用支路连接将两路网络的结果进行融合,并将其结果通过一个卷积层从而得到最终重建的具有边缘增强效果的高分辨率图像。结果 以峰值信噪比(PSNR)和结构相似度(SSIM)作为评价指标来评价算法性能,在Set5、Set14和B100等常用测试集上放大3倍情况下进行实验,并且PSNR/SSIM指标分别取得了33.24 dB/0.9156、30.60 dB/0.852 1和28.45 dB/0.787 3的结果,相比其他方法有很大提升。结论 定量与定性的实验结果表明,基于边缘增强的深层网络的图像超分辨重建算法所重建的高分辨率图像不仅在重建图像边缘信息方面有较好的改善,同时也在客观评价和主观视觉上都有很大提高。  相似文献   

8.
由于可用信息不足,多帧图像超分辨率重建问题常常是一个不适定问题。为解这一问题,需要额外的图像先验知识。本文提出一个基于学习的多帧图像超分辨率重建算法,该方法从训练图像集中学习先验知识。实验表明本文方法要优于传统基于最大后验概率估计的超分辨率重建算法。  相似文献   

9.
提出了一种基于通用高斯马尔可夫随机场(0孙皿疆)模型的图像超分辨率重建方法,给出了求解过程和实验结果,并进行了分析。相对Compound Markov随机场模型和Huber-Markov随机场模型,GGMRF模型不用判断边缘或者线过程,因此优化求解简单,大大减少了运算量。实验结果表明在低噪声情况下,该方法重建图像视觉效果较好。  相似文献   

10.
图像超分辨率重建旨在从低分辨率图像恢复出高分辨率清晰图像.阐述了典型图像超分辨率重建方法的思想,从上采样位置和上采样方法、学习策略、损失函数等维度,对典型和最新的基于深度学习的图像超分辨率重建算法进行了评述,分析了最新的发展现状,并对未来发展趋势进行了展望.  相似文献   

11.
针对医学磁共振成像(MRI)过程中由于噪声、成像技术和成像原理等干扰因素引起的图像细节丢失、纹理不清晰等问题,提出了基于多感受野的生成对抗网络医学MRI影像超分辨率重建算法.首先,利用多感受野特征提取块获取不同感受野下图像的全局特征信息,为避免感受野过小或过大导致图像的细节纹理丢失,将每组特征分为两组,其中一组用于反馈...  相似文献   

12.
针对Huber-MRF先验模型对图像高频噪声抑制能力较差,而Gauss-MRF先验模型对图像高频过度惩罚的问题,提出了一种改进的自适应约束正则HL-MRF先验模型。该模型将Huber边缘惩罚低频函数与Lorentzian边缘惩罚高频函数相结合,对低频进行线性约束的同时对高频实现平滑惩罚;并采用自适应约束方法确定正则化参数,从而得到最优的参数解。与基于Gauss-MRF先验模型和Huber-MRF先验模型的超分辨率算法相比,HL-MRF先验模型获得的超分辨率重建图像在峰值信噪比(PSNR)和细节方面都有一定程度的提高,在抑制高频噪声、避免图像细节被过度平滑方面具有一定的优势。  相似文献   

13.
The intensity and direction of the light field (LF) can be recorded simultaneously by using LF cameras. However, since LF cameras sacrifice spatial resolution for higher angular resolution, the images acquired by LF cameras tend to have low spatial resolution. Therefore, LF image super-resolution (SR) has become an integral part of LF studies. Many existing LF image SR methods fail to fully utilize angular and spatial information due to only using partial sub-aperture images (SAIs). In this paper, we propose a progressive spatial-angular feature enhancement network (PSAFENet) to deal with the problem of missing information in LF image SR. Specifically, we first extract the spatial features of SAIs, the spatial and angular features contained in the macro-pixel images (MacPIs) by three different feature extraction modules. Then, these features are fed into a spatial-angular feature enhancement (SAFE) module to perform enhancement of spatial-angular information on the SAIs. To improve the reconstruction accuracy, we also use the information multi-distillation block (IMDB) to remove the redundant information before upsampling. Our network can well merge the angular and spatial information into each SAI, which facilitates the reconstruction of the LF images. Experimental results on five public datasets show that the proposed PSAFENet method outperforms existing methods in both qualitative and quantitative comparisons.  相似文献   

14.
目的 受成像距离、光照条件、动态模糊等因素影响,监控系统拍摄的车牌图像往往并不具备较高的可辨识度。为改善成像质量,提升对车牌的识别能力,提出一种基于亮度与梯度联合约束的车牌图像超分辨率重建方法。方法 首先充分结合亮度约束和梯度约束的优势,实现对运动位移和模糊函数的精确估计;为抑制重建图像中的噪声与伪影,基于车牌图像的文字化特征,进一步确定了亮度与梯度联合约束的图像先验模型。结果 为验证该方法的有效性,利用监控系统获得4组车牌图像,分别进行模拟和真实的超分辨率重建实验。在模拟实验中将联合约束图像先验重建结果与拉普拉斯、Huber-Markov(HMRF)以及总变分(TV)先验的处理结果进行对比,联合约束先验对车牌纹理信息的恢复效果优于其他3种常见图像先验;同时,在模拟和真实实验中,将本文算法与双三次插值、传统最大后验概率、非线性扩散正则化和自适应范数正则化方法的超分辨率重建结果进行比较,模拟实验的结果表明,在不添加噪声情况下,该算法峰值信噪比(PSNR)和结构相似性(SSIM)指标分别为35.326 dB和0.958,优于其他4种算法;该算法在真实实验中,能够有效增强车牌图像纹理信息,获得较优的视觉效果,通过对重建车牌图像的字符识别精度比较,本文算法重建结果的识别精度远高于其他3种算法,平均字符差距为1.3。结论 模拟和真实图像序列的实验结果证明,基于亮度—梯度联合约束的超分辨率重建方法,能够降低运动和模糊等参数的估计误差,有效减少图像中存在的模糊和噪声,提高车牌的识别精度。该算法广泛适用于因光照变化、相对运动等因素影响下的低质量车牌图像超分辨率重建。  相似文献   

15.
目的 针对深度图像分辨率非常低的问题,结合同场景高分辨率彩色图像,提出一种基于彩色图约束的二阶广义总变分深度图超分辨率重建方法。方法 首先将低分辨率深度图映射到高分辨率彩色空间;然后利用二阶广义总变分模型,将带有边缘指示函数的高分辨率彩色约束项作为正则项,使得深度图像超分辨率重建问题变成最优求解问题;最后通过迭代重加权和原—对偶方法进行求解。结果 实验结果表明,本文方法可以有效地保护图像的边缘结构,在定性和定量两个方面都可达到很好的效果。结论 本文方法可以有效地解决深度图分辨率非常低的问题。  相似文献   

16.
胡晓辉 《计算机应用研究》2020,37(3):947-950,956
针对现有卷积神经网络图像超分辨率复原算法中映射函数容易出现过学习、损失函数收敛性不足等问题,通过结合现有视觉识别算法和深度学习理论对其进行改进。首先将原有SRCNN层数从3层提高到13层,并提出一种自门控激活函数形式swish,代替以往网络模型常用的sigmoid、ReLU等激活函数,充分利用swish函数的优势,有效避免了过拟合问题,更好地学习利用低分辨率到高分辨率图像之间的映射关系指导图像重建;然后在传统网络损失函数中引入Newton-Raphson迭代法理论,进一步加快了收敛速度。最后通过实验证明了改进的卷积神经网络模型能够有效改善图像的清晰度,并在主观视觉效果和客观参数评价指标上有进一步提高。  相似文献   

17.
In this paper, the learning-based single image super-resolution (SR) is regarded as a problem of space structure learning. We propose a new SR method that identifies a space from the low-resolution (LR) image space that best preserves the structure of the high-resolution (HR) image space. The inference between the two structure-consistent spaces proves to be accurate and predicts HR image patches with higher quality. An effective iterative algorithm is also proposed to find the near-optimal solution to the model, which can be easily implemented in parallel computing. Extensive experiments are performed to show the effectiveness of the proposed algorithm.  相似文献   

18.
19.
基于低层次计算机视觉的超分辨率图像重建   总被引:1,自引:1,他引:0       下载免费PDF全文
在基于低层次计算机视觉的超分辨率图像重建过程中,角点检测和插值是两个关键的技术。首先在SUSAN角点检测算法的基础上提出了改进算法,改进后的算法根据图块对比度的不同,在确定位于不同图块中的像素的USAN面积时采用了可变灰度阈值,可变灰度阈值的采用,使得检测出的角点分布更加均匀,而角点分布均匀则使得图像配准更加精确,有利于后期的重建工作。其次,提出了一种适合于超分辨率图像重建的插值算法:基于圆区域的自适应插值算法。该算法可以根据待插值点周围的灰度特征自适应决定插值策略,将线性插值、最邻近插值和中值插值法有机地结合在一起。大量的仿真实验证明了提出算法具有运算量小、图像重建后的效果出重,易于实现。  相似文献   

20.
针对SAR图像超分辨重构问题,建立了基于多尺度Contourlet域的正则化模型。在选取正则化参数时,提出一种自适应确定方法,该方法无需知道噪声大小和图像的先验知识,提高了确定正则化参数的准确性;求解模型时用FR共轭梯度法来改善算法的收敛性。将该算法分别与空域中正则化算法和小波域中正则化算法进行了比较,仿真实验结果表明,该算法较好地再现了各种边缘信息,其重构结果均优于其他两种方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号