首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
椭球弹丸超高速撞击防护屏碎片云数值模拟   总被引:6,自引:0,他引:6  
低地球轨道的各类航天器易受到微流星体及空间碎片的超高速撞击.本文采用AUTODYN软件进行了椭球弹丸超高速正撞击及斜撞击防护屏碎片云的数值模拟.给出了三维模拟的结果.研究了在相同质量的条件下,不同长径比椭球弹丸以不同速度和入射角撞击防护屏所产生碎片云的特性,并与球形弹丸撞击所应产生的碎片云特性进行了比较.结果表明:在相同的速度下,不同长径比椭球弹丸撞击的碎片云形状、质量分布和破碎程度是不同的,随撞击入射角的增加弹丸的破碎程度增大,滑弹碎片云的数量增加;随撞击速度的增加,弹丸的破碎程度也增加.  相似文献   

2.
日益增长的空间碎片对在轨航天器的安全运行构成了严重威胁,毫米级空间碎片的防护已成为航天器结构设计必须考虑的问题之一.航天器的蒙皮是抵御空间碎片超高速撞击的最基本防护结构.采用数值仿真并结合试验验证的方法,对5 mm厚5A06铝合金单层板承受2A12铝合金球形弹丸正撞击下的弹道极限进行了研究.研究表明,在验证实验速度范围内,数值仿真结果与实验结果吻合良好;使用数值仿真对实验速度以上的区间进行拓展研究,获得了其弹道极限曲线和弹道极限方程;数值仿真和实验结果与已有经验方程对比表明,经验方程与具体材料的弹道极限有较大偏差,因此,应具体问题具体分析.  相似文献   

3.
林敏  庞宝君  张凯 《振动与冲击》2012,31(18):73-77
采用数值仿真方法研究不同形状弹丸撞击连续型防护屏和丝网防护屏后形成的碎片云特性。研究表明:相同面密度的多层丝网防护屏防护效果优于连续型防护屏;对于连续型防护屏,锥体撞击部位对后板毁伤的影响大于锥体长径比对后板毁伤的影响,而对于丝网防护屏影响规律则相反;研究长固锥锥尖撞击2种防护屏后碎片云动量密度,撞击连续型防护屏后,弹丸碎片云动量密度分布具有对称性,较之丝网防护屏分布更为集中,且动量密度峰值大于撞击丝网防护屏后弹丸碎片云动量密度峰值。  相似文献   

4.
采用C语言建立了3种泡沫铝材料模型,即不均匀结构模型、均匀结构模型和大孔缺陷结构模型,更符合实际泡沫铝材料的结构.利用ANSYS软件对建立的模型进行了有限元分析,得到了不同模型相对密度与弹性模量的关系,指出其弹性模量与密度呈指数关系.  相似文献   

5.
泡沫铝填充薄壁结构的应用日趋广泛,研究了泡沫铝填充薄壁铝合金方管准静态轴向压缩条件下的力学性能。实验选用铝合金方管作为面板,Al-Mg合金泡沫铝作为夹芯制备泡沫铝填充薄壁铝合金方管。结果表明泡沫铝层合方管与薄壁铝合金方管的变形模式相同,都为对称叠缩变形模式,而且层合方管产生的折叠数比薄壁铝合金方管多。填充泡沫铝后,层合方管承受压力的能力也大大提高。采用ABAQUS软件建立了薄壁铝合金方管的有限元模型进行数值模拟,并且与相应的实验结果作对比,结果表明数值模拟与实验结果基本吻合。  相似文献   

6.
隧道内爆炸作用可能导致其衬砌结构的破坏和坍塌,造成车辆通行受阻和生命财产损失。本文利用AUTODXN软件对含泡沫铝防护层隧道衬砌结构的抗爆性能进行数值模拟,分析了不同厚度防护层的抗爆效果。结果表明:泡沫铝对爆炸冲击波有良好的吸能作用和衰减特性,对隧道衬砌的损伤有明显的防护效果。  相似文献   

7.
泡沫铝因具有低密度、高比刚度、缓冲、减震等诸多优良特性而引起了人们越来越多的关注,并且逐渐在汽车、航空等领域得到广泛运用.泡沫铝复合结构是由泡沫铝芯与外层的致密金属通过各种连接方式所组成,其形状各异且具有比单纯泡沫铝更加优异的性能.综述了国内外泡沫铝及其复合结构的应用现状,讨论了其制备方法并对其发展前景进行了展望.  相似文献   

8.
郑伟  庞宝君  李锋  陈勇 《振动与冲击》2013,32(18):141-145
针对人类航天活动在空间中积累的大量空间碎片严重威胁在轨运行航天器安全,急需开发具有优良防护性能的新材料防护结构问题,初步研究填充空心球/铝基复合材料Whipple防护结构的撞击特性,获得相关撞击损伤数据,与填充实心铝板的Whipple防护结构进行对比,并评估空心球/铝基复合材料作为一种航天器防护材料的可行性。  相似文献   

9.
泡沫铝复合材料的研究   总被引:3,自引:0,他引:3  
泡沫铝材料具有优越的综合性能,已被广泛应用于各个领域.系统阐述了国内外泡沫铝材料的应用现状,指出泡沫铝材料复合化是进一步完善其结构与功能的有效途径,并在此基础上详细介绍了国内外泡沫铝复合材料的研究情况.  相似文献   

10.
目的为了有效降低冲击能量对仪器带来的损伤,从而对内部装置进行有效的保护。方法在薄壁金属管内填充倾斜功能金属材料,并对其进行仿真试验。随后基于能量吸收缓冲原理,并分析传统吸能装置,以提出新的能量吸收缓冲方案。结果相较于传统缓冲吸能结构,新复合结构的吸能性能平均增幅为4.67%。利用数值模拟计算,并结合试验对比论证了方案的技术可行性。结论提出的新型填充结构在能量吸收方面有明显效果,基本上达到了预期要求。  相似文献   

11.
Whipple shield ballistic limit at impact velocities higher than 7 km/s   总被引:3,自引:0,他引:3  
The Whipple bumper shield was the first system developed to protect space structures against Meteoroids and Orbital Debris (M/OD), and it is still extensively adopted. In particular, Whipple shields are used to protect several elements of the International Space Station, although the most exposed areas to the M/OD environment are shielded by innovative low weigh and high resistance systems.

Hydrocode simulations were used to predict the ballistic limit of a typical aluminium Whipple shield configuration for space applications in the impact velocity range not accessible by the available experimental techniques. The simulations were carried out using the AUTODYN-2D and the PAMSHOCK-3D codes, allowing to couple the gridless Smoothed Particles Hydrodynamics with the Lagrange grid-based techniques. The global damage of the structure after the impact was determined with particular attention to the back wall penetration, and the results obtained with the two hydrocodes were compared with those given by semi-empirical damage equations.

A few hypervelocity Light Gas Gun impact experiments, performed on the same shield configuration at velocities up to 7.2 km/s, were previously simulated in order to assess the capability and limitations of the two hydrocodes in reproducing the experimental results available in the lower velocity regime. The influence of material models on the numerical predictions is discussed.  相似文献   


12.
A series of hypervelocity impact tests have been performed on aluminum alloy Whipple shields to investigate failure mechanisms and performance limits in the shatter regime. Test results demonstrated a more rapid increase in performance than predicted by the latest iteration of the JSC Whipple shield ballistic limit equation (BLE) following the onset of projectile fragmentation. This increase in performance was found to level out between 4.0 and 5.0 km/s, with a subsequent decrease in performance for velocities up to 5.6 km/s. For a detached spall failure criterion, the failure limit was found to continually decrease up to a velocity of 7.0 km/s, substantially varying from the BLE, while for perforation-based failure an increase in performance was observed. An existing phenomenological ballistic limit curve was found to provide a more accurate reproduction of shield behavior that the BLE, prompting an investigation of appropriate models to replace linear interpolation in shatter regime. A largest fragment relationship was shown to provide accurate predictions up to 4.3 km/s, which was extended to the incipient melt limit (5.6 km/s) based on an assumption of no additional fragmentation. Alternate models, including a shock enhancement approach and debris cloud cratering model are discussed as feasible alternatives to the proposed curve in the shatter regime, due to conflicting assumptions and difficulties in extrapolating the current approach to oblique impact. These alternate models require further investigation.  相似文献   

13.
All Earth-orbiting spacecraft are susceptible to damage that can be caused by high-speed impacts with pieces of man-made debris or naturally-occurring meteoroids, and spacecraft at locations other than near Earth are subject to similar naturally-occurring hazards. Traditional protective shield design consists of a “bumper” that is placed at a relatively small distance away from the main “inner wall” of the spacecraft component, the performance of which is typically characterized by its ballistic limit equation (BLE). This paper addresses the question of how well the NASA/JSC dual-wall BLE performs when it is used to predict inner wall response in applications other than those used for its development. The major conclusions reached as a result of the analyses performed are that (1) to be truly conservative the critical projectile diameter value as calculated by the NASA/JSC dual-wall BLE needs to be multiplied by 0.75 to accommodate results from other test databases, (2) the NASA/JSC dual-wall BLE is not as conservative for impact obliquities exceeding 60° as it is for obliquities of 45° or less, and (3) the NASA/JSC dual-wall BLE is not as conservative for impact tests with MLI between the bumper and inner wall as it is for tests without the MLI.  相似文献   

14.
The results of 18 impact tests performed on Whipple shields were compared to the predicted ballistic limits of the shields in the region where the impact velocity of the threatening particle was high enough to produce melting and incipient vaporization of the particle. Ballistic limit equations developed at NASA Johnson Space Center were used to determine nominal failure thresholds for two configurations of all-aluminum Whipple shields. In the tests, 2017-T4 aluminum spheres with diameters ranging from 1.40 to 6.35 mm were used to impact the shields at impact velocities ranging from 6.94 to 9.89 km/s. Two different aluminum alloys were used for the rear walls of a simple Whipple shield. The results of 13 tests using these simple Whipple shields showed they offered better-than-predicted capability as impact velocity increased and that the strength of the rear wall material appeared to have a smaller-than-predicted effect on the shield performance. The results of five tests using three configurations of a scaled Space Station shield - a plain shield at 0 degrees, two shields with multilayer insulation in the space between the bumper and the rear wall (also at 0 degrees), and two tests with the plain shield at 45 degrees obliquity - showed that these shields met their predicted capabilities.  相似文献   

15.
A beam-on-foundation analogy is used to analyse perforation of thin tubes hit at normal obliquity by flat-nosed missiles. A structural model representing this analogy was developed previously by Yu and Stronge [1] for analysing large indentation of thin tubes hit by blunt missiles. In the present paper this model is extended to include local shear deformation. This analytical model is used to predict local failure due to plugging and consequently the ballistic limit of a tube composed of rate-independent rigid-plastic material. These calculations are compared with some experimental results for mild steel tubes of different thicknesses that were struck by flat-nosed missiles.  相似文献   

16.
All spacecraft in low orbit are subject to hypervelocity impact by meteoroids and space debris, which can in turn lead to significant damage and catastrophic failure. In order to simulate and study the hypervelocity impact of space debris on spacecraft through hypervelocity impact on AL-Whipple shield, a two-stage light gas gun was used to launch 2017-T4 aluminum alloy sphere projectiles. The projectile diameters ranged from 2.51 mm to 5.97 mm and impact velocities ranged from 0.69 km/s to 6.98 km/s. The modes of crater distribution on the rear wall of AL-Whipple shield by hypervelocity impact of AL-spheres in different impact velocity ranges were obtained. The characteristics of the crater distribution on the rear wall were analyzed. The forecast equations for crater distribution on the rear wall of AL-Whipple shield by normal hypervelocity impact were derived. The results show that the crater distribution on the rear wall is a circular area. As projectile diameter, impact velocity and shielding spacing increased, the area of crater distribution increased. The critical fragmentation velocity of impact projectile is an important factor affecting the characteristics of the crater distributions on the rear wall.  相似文献   

17.
In order to calibrate the output of hydrocode simulations of hypervelocity impacts on shielded gas-filled pressure vessels, Light Gas Gun impact experiments were performed. In a first step, tests were performed on so-called equivalent Whipple shield (EWS) configurations having basically the same set-up as the shielded pressure vessels (i.e. bumper thickness and - material, stand-off and backwall plate thickness and -material). Purpose was the determination of the impact conditions that lead to penetration into the backwall plate but not perforation of it or leakage through the impacted area. In a second step, impact tests on the corresponding shielded pressure vessels were performed with the same test conditions as the EWS. The purpose of the tests was the investigation whether leakage occurs when the vessel's front wall is not perforated, but just cratered. The test conditions lead to no leakage in all tests. The most important measured damage parameter was the crater depth of the deepest crater in the vessel's front wall/the backwall plate of the EWS, respectively. Hydrocode simulations were then performed to assess the capability of the numerical tool to correctly predict the damage on the impacted vessel surface. Normal impacts of aluminium spheres against shielded vessels were simulated using AUTODYN-2D, including and evaluating the effect of the static stress induced in the vessel walls by the inner pressure. Particular attention was focused on the exact determination of the maximum crater depth caused by the debris cloud impact on the vessel wall/the backwall plate of the EWS, respectively. Bumper and projectile were represented by SPH particles, the vessel shell was represented by a Lagrange grid. The results showed a very good agreement with the measured crater depths of the experiments.  相似文献   

18.
现有的尖头弹侵彻金属靶板的弹道极限计算模型往往需要大量的试验数据和靶板材料的动态性能参数,且没有考虑侵彻速度对侵彻效果的影响,这给工程应用带来了很大的不便和误差。基于这一问题,考虑速度效应和靶板材料参数对侵彻的影响,结合流体动力学原理与动态空穴膨胀理论,分别提出了双模式和单模式侵彻模型。双模式侵彻模型的侵彻过程可分为两个阶段:流体动力变形阶段和塑性变形阶段,当侵彻速度小于靶材产生流体动力变形的临界速度时,侵彻进入塑性变形阶段,根据功能原理,建立了计算弹道极限的解析模型;单模式侵彻模型仅考虑塑性变形阶段。解析模型计算的弹道极限与弹道试验结果吻合的较好,且模型中不涉及弹道试验数据和靶板材料的动态性能参数,易于迅速求解,便于工程应用,可用于对延性金属靶板抗尖头弹侵彻能力的评估。  相似文献   

19.
In this paper, a novel hybrid composite shield to protect space structures from hypervelocity impact of micrometeoroid and space debris is proposed. The finite-element model of the proposed shield was constructed and finite-element analysis was conducted to approximate the energy absorption rate. Before the final model analysis, analysis of each component including the aluminum plate (front plate), PMMA plate (rear plate), and intermediate layer of fabric was performed, verifying the finite-element model of each component. The material properties used in the analysis were predicted material property values for high strain rates. The analysis results showed that, other than the fabric, the energy absorption rate of each component was in agreement. Afterwards, the finite-element model of the hybrid composite shield was constructed, where it was analyzed for the constrained and unconstrained fabric boundary condition cases. Through the finite-element analysis, the fiber pullout mechanism was realized for the hybrid shield with free boundary inserted fabric, and it was observed that this mechanism led to energy absorption increase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号