首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 515 毫秒
1.
本文基于Oyane韧性断裂准则,结合数值模拟方法,预测板料不同应变状态下的极限应变.准则中的材料参数通过单向拉伸和平面应变拉伸试验确定.在模拟胀形试验获得每一时间步应力、应变值的基础上,应用韧性断裂准则预测板料的成形极限.模拟结果表明用韧性断裂准则和数值模拟相结合的方法能成功获得板料的成形极限图.  相似文献   

2.
为确定适合描述高强度热轧钢板变形行为的屈服准则,采用Hollomon流动应力方程和三种屈服准则对几类高强度热轧钢板在不同应变路径下达到成形极限的成形过程进行了模拟.比较了Barlat(1989)、Hill(1948)、Barlat六参数3种屈服准则,对热轧酸洗板QStE340TM、SAPH370和热轧镀锌板ZStE260P在单向拉伸、平面应变和双向等拉3种应变路径下的变形过程进行了比较.结果表明,Barlat(1989)屈服准则能较好地描述单元的变形行为,且在平面应变路径下的模拟结果最符合实验结果.  相似文献   

3.
目的 研究零部件在成形与碰撞过程中,6016铝合金在不同应力状态下的断裂行为。方法 通过准静态拉伸实验,获得了6016铝合金的基本力学性能。利用Nakajima成形极限实验,获得了6016铝合金材料的断裂成形极限曲线。设计了7种涵盖成形及碰撞过程中应力状态的断裂极限测试试样,采用数字图像相关技术(DIC)记录了试样在变形过程中的全场应变。利用实验-有限元反求方法标定了6016铝合金的GISSMO断裂准则的参数,并用帽形件三点弯曲实验验证了模型的合理性。结果 相比于传统断裂成形极限图的预测结果,基于GISSMO断裂准则的仿真结果与实验具有更好的一致性。结论 所建立的GISSMO模型可以用于预测6016铝合金在复杂应力状态下的断裂行为。  相似文献   

4.
板料成形中韧性断裂准则应用研究进展   总被引:2,自引:0,他引:2       下载免费PDF全文
对板料成形中的成形极限应力图、最大变薄率、成形极限图以及韧性断裂准则等预测成形极限的方法,进行了综述和分析。指出利用韧性断裂准则,不但能够较好地预测塑性差的板料成形极限,而且还能考虑应变路径的变化。利用有限元方法模拟时,韧性断裂准则既可以应用到完全耦合的弹塑性损伤模型的增量方法中,也可以应用到一步有限元逆算法中。为了准确地预测成形极限,除了提高有限元模拟精度外,应找到一种本质地反映材料性能的韧性断裂准则。  相似文献   

5.
在铝合金板温成形数值仿真中,成形极限图是判断材料颈缩失效和评价温冲压成形能力的基础.提出了一种温成形条件下铝合金板成形极限图的理论预测方法.采用曲线拟合方法建立了Al5083-O铝合金板应变硬化指数、应变率硬化指数随成形温度的变化规律;采用M-K理论模型,结合Logan-Hosford屈服函数计算获得温成形条件下铝合金板的成形极限图.计算结果与实验数据吻合较好,证实了温成形条件下铝板成形极限图的理论预测方法是正确的.  相似文献   

6.
镁合金板材成形极限图(FLD)的实验研究   总被引:1,自引:0,他引:1  
首次利用电蚀网格法,在BCS-30D板材成形性试验机上进行镁合金板材成形实验,利用先进的ASAME自动应变测量系统进行应变测量分析,测试镁合金板材的成形极限图(FLD).实验表明,室温下AZ31B镁合金冷轧态板材的力学性能和冲压性能不佳,难以完成成形极限图的测试,不具备成形加工能力;热轧态镁合金板材具有一定的塑性和成形性能,并测试了其成形极限图.成形极限曲线FLC的测试对制订镁合金板材的冲压成形工艺提供了理论依据.  相似文献   

7.
程驰  龙士国  马增胜  任晓雷 《材料导报》2012,26(10):135-139
用ABAQUS有限元软件结合弧长法对镀层薄板冲压成形进行数值模拟,研究了镍镀层薄板在不同应变路径下的平面应变,得到了镀层的冲压成形极限,并用RG2000型微机控制电子万能试验机结合ARGUS板金成形网格应变测试系统对镍镀层薄板进行冲压成形实验验证。结果表明,用弧长法得到的失稳减薄率可以较好地预测镀层的成形极限,而以微裂纹产生时的减薄率为失稳依据在一定程度上可以满足工程需要。  相似文献   

8.
韧性断裂准则在高强钢板料成形中的应用   总被引:1,自引:1,他引:0       下载免费PDF全文
 针对板料成形中的韧性断裂准则预测成形极限的方法,进行了综述和分析,提出了利用韧性断裂准则能够较好地预测塑性差的板料成形极限,而且还能考虑应变路径的变化.将Cockroft和Latham准则应用到高强度钢板DP590的成形预测中.对高强钢DP590进行了单向拉伸试验,获得了相应的物性参数.同时对该高强钢进行了方盒件成形试验,并进行了相应的有限元模拟.通过对高强钢的极限试验,利用有限元模拟获得了该材料的Cockroft和Latham准则常数.最后利用该常数对方盒件的拉深过程进行了缺陷的预测,模拟结果和试验结果完全吻合.表明韧性断裂准则是可以应用到高强度钢板的成形中的.  相似文献   

9.
为了提高大幅面板材成形的模拟精度,在板材折弯平面应变假设条件下,推导出基于Hill各向异性屈服准则的弹塑性本构方程.借助ABAQUS有限元软件本构模块用户子程序接口,通过编程将上述推导的应力-应变本构关系显示表达式嵌入ABAQUS分析平台.以超长大开口半椭圆形工件成形为例,建立了大幅面钢板渐进折弯的三维弹塑性有限元模型,并数值模拟了多道次渐进折弯成形及回弹全过程.模拟效果和工程应用结果表明,与传统的基于平面应力假设的本构关系模型相比,采用平面应变假设的本构关系模型的模拟结果更接近实验值.  相似文献   

10.
目的 NbTiAl合金在常温下的塑性较差,针对300 ℃时NbTiAl合金的成形性能进行研究,探究其在高温环境下的力学性能和成形极限,分析理论预测成形极限的可行性,为进一步研究铌合金性能和扩展其工程应用提供理论参考。方法 采用高温单拉和高温成形极限试验,获得了NbTiAl板材在300 ℃的应力应变曲线及成形极限曲线,使用Swift硬化模型针对塑性变形段进行拟合,并采用M−K失稳理论,结合相应的材料本构模型,对NbTiAl合金在高温环境下的成形极限进行了理论预测,并与实验数据进行了对比。结果 NbTiAl合金在300 ℃时的塑性应变阶段仍然具有加工硬化效应,在初始厚度不均度f0为0.998时,得到的理论曲线与试验点在左侧拉−压区符合得较好,但对右侧拉−拉区的理论预测与试验结果相差较大。结论 NbTiAl合金在300 ℃时具有较好的成形性,采用合适的不均匀度系数,利用M−K理论可以较好地预测NbTiAl合金高温成形极限曲线左侧拉−压区的极限应变,但对右侧拉−拉区域极限应变的预测结果误差较大。  相似文献   

11.
A New Curve Fitting Method for Forming Limit Experimental Data   总被引:1,自引:0,他引:1  
The forming limit curve (FLC) can be obtained by. means of curve fitting the limit strain points of different strain paths. The theory of percent regression analysis is applied to the curve fitting of forming limit experimental data. Forecast intervals of FLC percentiles can be calculated. Thus reliability and confidence level can be considered. The theoretical method to get the limits of limit strain points distributing region is presented, and the FLC position can be adjusted according to practical requirement. Method for establishing FLC with high reliability using small samples is presented at the same time. This method can make full use of the current experimental data and the previous data. Compared with the traditional method that can only use current experimental data, fewer specimens are required in the present method to obtain the same precision and the result is more accurate with the same number of specimens.  相似文献   

12.
In this study, an approach based on the modified Marciniak–Kuczynski (M–K) method for computation of an extended stress-based forming limit curve (FLC) is presented. The extended stress-based FLC is built based on equivalent plastic stress versus mean stress. This curve has some advantages in comparison with the conventional FLC. This new criterion is much more strain path independent than the conventional FLC. The effect of strain path on the predicted extended stress-based FLC is reexamined. For this purpose, two types of pre-straining on the sheet metal have been loaded. Moreover, the plane stress state assumption is not adopted in the current study. The influence of a through-thickness compressive normal stress is also investigated theoretically. The verifications of the theoretical FLCs are performed by using some available published experimental data.  相似文献   

13.
The potential process for mass production of magnesium alloy components in vehicles—warm stamping process was investigated systematically in the present study. For analyzing the forming process, an accurate numerical model describing the unique characteristics of magnesium alloy sheets under warm forming is very essential. Aiming at this, hardening/softening model for 1.5 mm thickness AZ31B magnesium alloy sheet were firstly constructed based on uniaxial tensile tests. Secondly, semispherical drawing was carried out under the selected temperature to generate experimental forming limit curve (FLC) for AZ31B sheet. Then, friction coefficient was identified using a high-temperature tribo-tester. Finally, numerical simulation was implemented and formability of AZ31B sheet warm forming was verified with experiment. The result shows that the formability, thickness distribution and equivalent strain distribution in simulation agreed well with the actual specimens, which thus provided a good data base for describing the unique characteristics of magnesium alloy sheets under warm forming.  相似文献   

14.
In this paper, the effects of strain path change on the forming limit diagram (FLD) of AA5083 sheet were investigated. The aim is to predict the forming limit curve (FLC) with non-proportional loading path by ductile fracture criteria. For this purpose, some square blanks were pre-strained by uniaxial tension in rolling direction (RD) and transverse direction (TD), and some others were pre-strained by biaxial stretching over a hemispherical punch. Then, the FLD test specimens were prepared by trimming the pre-strained blanks with the longitudinal axis in the RD and TD directions. The out-of-plane formability test was used for obtaining the FLD. The commercial finite element software ABAQUSE 6.9 was used for simulation in accordance with the experimental procedure. For trimming in the simulation environment, a program was written in MATLAB 7.6 that could determine the elements and introduce their properties to the new simulation model. Ductile fracture criteria were used for predicting the failure, and the Hill’79 criterion was used for applying the anisotropic coefficients. The results show that pre-straining in biaxial tension generally reduces the FLC and shifts it to the right-hand side of the FLD, whereas pre-straining in uniaxial tension raises the FLC and shifts it to the left-hand side. The numerical results were compared with the experimental findings, and relatively good agreement was achieved.  相似文献   

15.
In this work, the high-strength steel (HSS) sheet dual-phase 440 (DP440) were conducted to establish the forming limit curve (FLC) and analytical forming limit stress curve (FLSC) obtained from experimental forming limit curve. First, the Nakajima stretch forming examination was carried out to obtain forming limit curve of investigated sheet. Afterwards, the theoretical Marciniak–Kuczinsky (M–K) model was developed and calculated to evaluate localized necking limits both in strain and stress spaces combination with anisotropic yield criteria. Then, the analytical forming limit stress curves were plastically calculated by using experimental forming limit curve data combination with Swift hardening model and anisotropic yield criteria namely, Hill’48 and Yld2000-2d for representing anisotropic plastic deformation behavior on examined steel sheet. Finally, automotive stamping parts were performed in order to verify an applicability of all developed curves. It was observed that the analytical forming limit stress curves could more precisely predict the formability of automotive parts better than the forming limit curve based on strain. Particularly, the one based on Yld2000-2d predict better than the one based on Hill’48. Simultaneously, the experimental forming limit curve and analytical forming limit stress curve were also evaluated comparing with the theoretical calculated forming limit curve and forming limit stress curve using the Marciniak–Kuczinsky model. It should be noted again that the experimental forming limit curve and analytical forming limit stress curve are the best one. Therefore, the Yld2000-2d yield function better represented the anisotropic behavior of the high-strength steel sheet dual-phase 440 than Hill′ 48 yield function, and can suitable be used for the analysis prediction and design of bumper automotive parts under forming processes.  相似文献   

16.
Advanced High Strength Steels (AHSS) is a promising material for automotive applications due to its high strength-to-weight ratio compared to other steels. Recently third generation steels have been developed which show intermediate properties between first and second generation AHSS. Formability analysis was performed between first generation Transformation Induced Plasticity (TRIP) and second generation Quenched and Partitioned (Q&P) AHSS. The main objective of the study is to perform formability analysis of TRIP and Q&P AHSS. The chemical compositions of both the steels are almost similar but different processing conditions lead to microstructural variations. Experimental and simulated strain-path diagram (SPD) was plotted from drawing to stretching regions using Limit Dome Height (LDH) test and Finite Element Method (FEM) respectively. The formability of TRIP steel is higher when compared to Q&P steels. Stretching regions show large deviation between experimental and simulated SPD for both the steels. A new strain localization criterion is proposed to construct a forming limit curve (FLC) for both experimental and simulated SPD. The proposed failure criterion is compared with other failure criteria for FLC prediction. The FLC based on new strain localization criterion shows better agreement with experimental FLC compared to other failure criteria.  相似文献   

17.
A strain-based forming limit criterion is widely used in sheet-metal forming industry to predict necking. However, this criterion is usually valid when the strain path is linear throughout the deformation process [1]. Strain path in incremental sheet forming is often found to be severely nonlinear throughout the deformation history. Therefore, the practice of using a strain-based forming limit criterion often leads to erroneous assessments of formability and failure prediction. On the other hands, stress-based forming limit is insensitive against any changes in the strain path and hence it is first used to model the necking limit in incremental sheet forming. The stress-based forming limit is also combined with the fracture limit based on maximum shear stress criterion to show necking and fracture together. A derivation for a general mapping method from strain-based FLC to stress-based FLC using a non-quadratic yield function has been made. Simulation model is evaluated for a single point incremental forming using AA 6022-T43, and checked the accuracy against experiments. By using the path-independent necking and fracture limits, it is able to explain the deformation mechanism successfully in incremental sheet forming. The proposed model has given a good scientific basis for the development of ISF under nonlinear strain path and its usability over conventional sheet forming process as well.  相似文献   

18.
目的 通过理论预测及胀形实验建立GH625高温合金的成形极限曲线,并结合仿真手段揭示其成形性能.方法 首先,通过基本力学性能测试获取不同方向下GH625材料的基本力学参数;然后,基于颈缩理论和M-K理论模型预测GH625材料的成形极限曲线;其次,通过胀形实验建立相应的成形极限图,并与理论结果进行对比;最后,结合有限元方法进一步研究GH625材料的成形特性.结果 准确获得了GH625高温合金的塑性应变比r值、应变硬化指数n值等参数;通过理论模型及胀形实验分别获得了相应的成形极限曲线,基于颈缩理论的集中性失稳预测结果与实验结果吻合较好;建立了可靠的有限元模型,进一步分析了摩擦因数及球头直径对GH625材料成形性能的影响规律.结论 建立了准确的GH625材料成形极限曲线的理论预测模型,并通过半球胀形实验验证了理论结果的可靠性,数值仿真结果发现,较小的摩擦因数或者冲头直径有利于改善GH625材料在胀形实验中的失效位置.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号