首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epitaxial SrTiO3 (STO) films have been grown on TiN buffered Si(001) by pulsed laser deposition. The TiN layer was in situ deposited at 540, 640 or 720°C whereas the STO film was grown at a fixed temperature of 640°C. We have studied the effect of the growth temperature of TiN on the epitaxial relationship of STO/TiN heterostructures. It is found that for TiN grown at 540 or 640°C the epitaxial relationship is 001STO 001TiN, and for TiN grown at 720°C it changes to (101)STO (001)TiN and [ 01]STO [1 0]TiN (or [ 01]STO [110]TiN). This change of relationship is accompanied by a sharp reduction in the out-of-plane lattice constant of the TiN layer. Fourier transform infrared spectra show that the longitudinal optic modes are active for all the STO films, but the absorption peak associated with the transverse optic mode is observed only in the (101) oriented STO films.  相似文献   

2.
Flow modulation chemical vapor deposition (FMCVD) with titanium tetrachloride (TiCl4) and ammonia (NH3) is effective for depositing titanium nitride (TiN) films with conformal morphology, good step coverage, low electrical resistivity, and low chlorine residual contamination. It means that FMCVD TiN film is a good candidate of diffusion barriers for copper interconnection technology in ULSI. But the diffusion barrier property of FMCVD TiN film against Cu diffusion has not been confirmed. So, firstly, we deposited Cu (100 nm)/FMCVD TiN (25 nm)/Si multilayer films and investigated the thermal stability of Cu/TiN/Si structure. Vacuum annealing was done at 400, 500, 550 and 600 °C. For films annealed for 30 min at 400 °C, Cu diffused through the TiN layer and formed copper silicides on the surface of Si substrates. Therefore, FMCVD films formed under such conditions are unsatisfactory diffusion barriers. To enhance the diffusion barrier property of FMCVD TiN films, we used sequential deposition to introduce a monolayer of Al atoms between two TiN films. Etch-pit tests showed that for TiN films with Al interlayer, Cu diffusion through the barrier occurred at 500 °C and that is 100 °C higher than TiN film without Al interlayer. Al atoms formed AlOx with oxygen atoms present in the TiN films as impurities, and fill up the grain boundaries of TiN film, thereby blocking the diffusion of Cu atoms.  相似文献   

3.
The growth of TiO2 films in the anatase crystal structure was investigated using reactive sputter deposition with H2O serving as the oxidizing species. With water vapor, the formation of phase-pure anatase TiO2 thin films via epitaxial stabilization on (001) LaAlO3 was achieved, although crystallinity was slightly inferior to that obtained when O2 was employed. Films grown using water vapor exhibited a rougher surface morphology indicating a difference in growth mechanisms. At low H2O pressure, the formation of a TinO2n−1 Magnéli phase was observed. When hydrogen was employed during growth, mixed phase films of rutile and anatase resulted. The development of crystallinity and phase as a function of deposition temperature and oxidant pressure are discussed.  相似文献   

4.
We synthesized titanium oxide thin films on MgO(100) single-crystal substrates by two reactive deposition methods and compared the structures of the thin films formed by these methods. In one method (pulsed-molecular-beam deposition method), molecular oxygen is supplied to the substrates by using a pulsed-molecular-oxygen beam source and deposition of one unit layer of titanium and subsequent supply of molecular oxygen are repeatedly performed. In the other method (radical beam deposition method), atomic oxygen is irradiated to the substrates by using an atomic oxygen beam generated by the radical beam source and irradiation of the atomic oxygen and deposition of titanium are simultaneously performed. In the case of the pulsed-molecular-beam deposition method, the crystal structure was changed by increasing the number of oxygen pulses supplied from the beam source. We found that the crystal structure of titanium oxide depended on the composition ratio of O:Ti in the film. The maximum ratio of O:Ti attainable by this method was 1.85, and at this ratio, (100)-oriented pseudorutile was formed. In the case of the radical beam deposition method, (100)-oriented anatase was formed below the titanium deposition rate of 0.10 nm/s and pseudorutile (TiO2−δ) was formed above 0.15 nm/s. The pseudorutile structure synthesized on this experiment was very stable in air. We concluded that the crystal structure of the pseudorutile is a new crystal structure of titanium oxide.  相似文献   

5.
J.M. Purswani  D. Gall 《Thin solid films》2006,515(3):1166-1170
100-nm-thick Cu layers were grown on MgO(001) substrates by ultra-high vacuum magnetron sputter deposition at substrate temperatures Ts ranging from 40 to 300 °C. X-ray diffraction ω−2θ scans, ω-rocking curves, and pole figures show that layers grown at Ts = 40 and 100 °C are complete single crystals with a cube-on-cube epitaxial relationship with the substrate: (001)Cu||(001)MgO with [100]Cu||[100]MgO. In contrast, Ts ≥ 200 °C leads to polycrystalline Cu layers with 001, 203, and 1¯75-oriented grains. The transition from a single- to a polycrystalline microstructure with increasing Ts is attributed to temperature-induced mass transport that allows Cu nuclei to sample a larger orientational space and find lower energy (and/or lower lattice mismatch) configurations. The large Cu- to-MgO lattice mismatch of 14% is relieved by 7 × 7 Cu unit cells occupying 6 × 6 MgO cells. In addition, for Ts ≥ 200 °C, the 001-oriented grains relax by tilting by 4° or 15° about 〈110〉 or 〈100〉 axes, respectively, while the 203 and 1¯75-oriented grains exhibit complex epitaxial relationships with the substrate: (203)Cu||(001)MgO with [010]Cu||[110]MgO and [302¯]Cu||[11¯0]MgO; and (1¯75)Cu||(001)MgO with [211¯]Cu||[100]MgO and [43¯5]Cu||[010]MgO. The surface roughness, as determined by X-ray reflectivity, increases with growth temperature. The smoothest layers are grown at 40 °C and exhibit an rms surface and buried interface roughness of 0.7 and 1.4 nm, respectively.  相似文献   

6.
Pulsed laser deposition has been used to grow epitaxially oriented thin films of Cu and Pt on (100)-oriented SrTiO3 and LaAlO3 substrates. X-ray diffraction results illustrated that purely epitaxial Cu(100) films could be obtained at temperatures as low as 100 °C on SrTiO3 and 300 °C on LaAlO3. In contrast, epitaxial (100)-oriented Pt films were attained on LaAlO3(100) only when deposited at 600 °C. Atomic force microscopy images showed that films deposited at higher temperatures consisted of 3D islands and that flat, layered films were obtained at the lowest deposition temperatures. Importantly, Cu films deposited at 100 °C on SrTiO3(100) were both purely (100)-oriented and morphologically flat. Pt and Cu films displaying both epitaxial growth and smooth surfaces could be obtained on LaAlO3(100) only by using a three-step deposition process. High-resolution transmission electron microscopy demonstrated an atomically sharp Cu/SrTiO3 interface. The crystalline and morphological features of Cu and Pt films are interpreted in terms of the thermodynamic and kinetic properties of these metals.  相似文献   

7.
The possibility to form secondary phases during annealing of a two-phase ternary nitride material is studied. By the use of an initial multilayer structure the new phase forms at the sublayer interfaces, resulting in an enhanced layering of the film. This is illustrated by a ZrAlN/TiN thin film where formation of a cubic structure ZrTi(Al)N phase at the sublayer interfaces improves the mechanical properties after annealing above 900 °C.  相似文献   

8.
We have grown AlN films on single-crystalline Mo(110), (100), and (111) substrates using a low temperature pulsed laser deposition (PLD) growth technique and investigated their structural properties. Although c-axis oriented AlN films grow on Mo(100), the films contain 30° rotated domains due to the difference in the rotational symmetry between AlN(0001) and Mo(100). AlN films with only poor crystalline quality grow on Mo(111) substrates, probably due to the poor surface morphology and high reactivity of the substrates. On the other hand, single crystal AlN films grow epitaxially on Mo(110) substrates with an in-plane relationship of AlN[11-20] // Mo[001]. Reflection high-energy electron diffraction or electron backscattered diffraction analysis has revealed that neither in-plane 30° rotated domains nor cubic phase domains exist in the AlN films. X-ray reflectivity measurements have revealed that the heterointerface between AlN and Mo prepared by PLD at 450 °C is quite abrupt. These results indicate that PLD epitaxial growth of AlN on single crystal Mo substrates is quite promising for the fabrication of future high frequency filter devices.  相似文献   

9.
Copper thin films were prepared on polyimide (PI) substrates by physical vapor deposition (PVD) and chemical vapor deposition (CVD). Titanium nitride (TiN) diffusion barrier layers were deposited between the copper films and the PI substrates by PVD. Auger electron spectroscopy compositional depth profile showed that TiN barrier layer was very effective in preventing copper diffusion into PI substrate even after the Cu/TiN/PI samples were annealed at 300 °C for 5 h. For the as-deposited CVD-Cu/PI, CVD-Cu/TiN/PI, and as-deposited PVD-Cu/PI samples, the residual stress in Cu films was very small. Relatively larger residual stress existed in Cu films for PVD-Cu/TiN/PI samples. For PVD-Cu/TiN/PI samples, annealing can increase the peeling strength to the level observed without a diffusion barrier. The adhesion improvement of Cu films by annealing treatment can be attributed to lowering of the residual tensile stress in Cu films.  相似文献   

10.
We examine the properties of ultrathin TiN films grown by reactive dc magnetron sputtering on single-crystalline MgO(100) substrates at growth temperatures ranging from 30 to 650 °C. The resistance of the films is measured in-situ, during growth, to study the thickness at which the films coalesce and become structurally continuous. Both the in-situ resistance measurements and X-ray diffraction measurements show a clear transition from polycrystalline growth to epitaxial (100) growth well below typical TiN growth temperatures, or between 100 and 200 °C. The coalescence and continuity thicknesses are 1.09 ± 0.06 nm and 5.5 ± 0.5 nm, respectively, at room temperature but reach a minimum of 0.08 ± 0.02 nm and 0.7 ± 0.1 nm, respectively, at 600 °C. A large drop in resistivity is seen with increasing growth temperature and the resistivity reaches 16.6 μΩ cm at 600 °C. Achieving epitaxy at such a low temperature and a low continuity thickness is important in a variety of applications such as device interconnects and metal-oxide-semiconductor devices.  相似文献   

11.
Epitaxial TiN layers, 0.3 μm thick, are grown on MgO(001) in the absence of applied substrate heating using very high flux, low-energy (below the lattice atom displacement threshold), ion irradiation during reactive magnetron sputter deposition in pure N2 discharges. High-resolution x-ray diffraction, reciprocal lattice maps, and transmission electron microscopy analyses reveal that the TiN(001) films grow with an (001)TiN||(001)MgO and [100]TiN||[100]MgO orientation relationship to the substrate. The layers are fully coherent with no detectable misfit dislocations. For comparison, TiN/MgO(001) films grown at temperatures of 700-850 °C under similar conditions, but with no intentional ion irradiation, are fully relaxed with a high misfit dislocation density. Thus, the present results reveal that intense low-energy ion irradiation during film growth facilitates high adatom mobilities giving rise to low-temperature epitaxy, while the low growth temperature quenches strain-induced relaxation and suppresses misfit dislocation formation.  相似文献   

12.
Nonpolar m-plane ZnO epitaxial film with [10-10] orientation was successfully grown on a large-size (100) LiGaO2 single crystal substrate by chemical vapor deposition method. The dependence of growth characteristics on the different growth conditions was investigated. Following CVD growth, the surface morphologies and epi-film crystallinity were examined by scanning electron microscopy and X-ray diffraction. Room-temperature photoluminescence spectra exhibit a strong near-band-edge emission peak at 377 nm with a negligible green band. Raman spectroscopy showed that the as-grown (10-10) ZnO epilayer on (100) LiGaO2 are under compressive stress. Further structural characterization and defect analysis of nonpolar ZnO material was performed using transmission electron microscopy.  相似文献   

13.
Lithium niobate films grown epitaxially on sapphire substrate were prepared using a thermal chemical vapor deposition method from the metalorganic compounds Li(C11H19O2) and Nb(OC2H5)5. The range of operating conditions for obtaining pure epitaxially grown LiNbO3 without other oxides is within that for obtaining pure polycrystalline LiNbO3 grown on silicon substrate. On analyzing the composition of the epitaxially grown LiNbO3 film, the composition of the film was similar to that of the LiNbO3 solid solution in the phase diagram of the Li-Nb composite oxide obtained for crystal growth from a molten solution.  相似文献   

14.
Highly pure single-walled carbon nanotubes (SWNT) were synthesized by alcohol catalytic chemical vapor deposition on silicon substrates partially covered by a thin layer of TiN. The TiN coating selectively prevented the growth of carbon nanotubes. Field emission scanning electron microscopy and Raman spectroscopy revealed the formation of high purity vertically aligned SWNT in the Si region. X-ray Photoelectron Spectroscopy and Atomic Force Microscopy indicated that Co nanoparticles are present on the Si regions, and not on the TiN regions. This clearly explains the obtained experimental results: the SWNT only grow where the Co is presented as nanoparticles, i.e. on the Si regions.  相似文献   

15.
The diffusion properties of Cu, Cu/titanium nitride (TiN) and Cu/TiN/Ti metallization on GaAs, including as-deposited film and others annealed at 350-550 °C, were investigated and compared. Data obtained from X-ray diffractometry, resistivity measurements, scanning electron microscopy, energy dispersive spectrometer and Auger electron spectroscopy indicated that in the as-deposited Cu/GaAs structure, copper diffused into GaAs substrate, and a diffusion barrier was required to block the fast diffusion. For the Cu/TiN/GaAs structure, the columnar grain structure of TiN films provided paths for diffusion at higher temperatures above 450 °C. The Cu/TiN/Ti films on GaAs substrate were very stable up to 550 °C without any interfacial interaction. These results show that a TiN/Ti composite film forms a good diffusion barrier for copper metallization with GaAs.  相似文献   

16.
Thin TiN films were grown on SiO2 by reactive high power impulse magnetron sputtering (HiPIMS) at a range of temperatures from 45 to 600 °C. The film properties were compared to films grown by conventional dc magnetron sputtering (dcMS) at similar conditions. Structural characterization was carried out using X-ray diffraction and reflection methods. The HiPIMS process produces denser films at lower growth temperature than does dcMS. Furthermore, the surface is much smoother for films grown by the HiPIMS process. The [200] grain size increases monotonically with increased growth temperature, whereas the size of the [111] oriented grains decreases to a minimum for a growth temperature of 400 °C after which it starts to increase with growth temperature. The [200] crystallites are smaller than the [111] crystallites for all growth temperatures. The grain sizes of both orientations are smaller in HiPIMS grown films than in dcMS grown films.  相似文献   

17.
D. Müller  E. Fromm 《Thin solid films》1995,270(1-2):411-416
TiN and Al coatings on substrates of high-speed steel, steel, aluminium and copper have been used to study mechanical properties of coating systems, especially the adhesion of the coating. The quantities measured are internal stress of the coating, determined by X-ray diffraction, the critical load of the scratch test, the microhardness obtained by the indenter technique, and the interface fracture energy, determined by a three-point bend test developed recently by the authors. The fracture energy, Gc, is a measure for the adhesion strength of a coating system. The effect of bias voltage, sputter cleaning and contamination of the substrates on the adhesion strength and other mechanical properties are investigated with the four methods mentioned. Each of the testing methods reveal only specific aspects of the behaviour of the coating systems. The data obtained depend on bulk properties of the film and the substrate material and on properties of the interface. Variation of the bias voltage can change them in quite different ways. In addition, the inter-relations between the adhesion strength of the coating and the failure behaviour of the three-point bend test samples are discussed.  相似文献   

18.
Single phase TiN and AlN films were prepared on a Si wafer from titanium tetra-etoxide and aluminum tri-butoxide solutions dissolved in ethanol and toluene, respectively, using an Ar/N2/H2 radio-frequency (r.f.) inductive thermal plasma chemical vapor deposition (CVD) method. The films were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, measurement of electrical resistivity and Vickers microhardness. Factors affecting the formation of the films (lattice parameter, chemical composition, oxygen/carbon content, and deposition rate of the films) were examined in terms of the N2 flow rate (2.5–4.5 slm), substrate temperature (300–700°C), feed rate of the solution (0.025–0.3 ml/min), and the mole ratio of the alkoxide solution (1:1–1:3). The optimum conditions for preparation of TiN films produced a film 0.2–3 μm thick with an oxygen content of 8 at.% and a free carbon content of 4 at.%, showing an electrical resistivity of 370 μΩ cm. The optimum conditions for AlN films produced a film 0.3 μm thick containing 14 at.% oxygen and 8 wt.% carbon. The deposition rate of the TiN film was determined to be 30–35 nm/min. The Vickers microhardness of the TiN and AlN films was found to be 10±1 and 13±3 GPa, respectively.  相似文献   

19.
The growth of thin Ti-oxide films (12 nm) on alumina substrate films formed by reactive evaporation of Ti in an oxygen atmosphere was studied by in situ internal stress measurements under ultra high vacuum conditions and transmission electron microscopy. Oxygen pressure and substrate temperatures were the varied parameters of the reactive evaporation. These Ti-oxide-films with different oxygen content (O2/Ti-films) were then used as substrate films for the deposition of a clean titanium film. The growth stress of the titanium film on the as-deposited O2/Ti-substrate films is comparable with that previously found for H2O/Ti-substrates and indicates island growth and the formation of polycrystalline titanium films. Annealing (400°C, 20 min) of the as-deposited – amorphous – O2/Ti-films gives rise to the formation of crystalline TiO2. The amount of TiO2 formed during annealing is strongly dependent on the oxygen content of the O2/Ti-film. The oxygen content, in return, is dependent on oxygen partial pressure and substrate temperature during O2/Ti-film deposition. The corresponding changes in the substrate film properties (oxygen content, crystallinity, etc.) are reflected in significant changes in the growth stress of the titanium film. The stress vs. thickness curve of these titanium films appears to indicate a superposition of the growth stress of two different growth modes, i.e. growth of a polycrystalline film with island growth on the as-deposited, amorphous oxide substrate and epitaxial growth of a quasi single crystalline film on the crystalline TiO2-substrate.  相似文献   

20.
Sequential flow chemical vapor deposition (SFCVD), utilizing TiCl4/NH3 as reactants and immediate NH3 treatment after film deposition, is applied to produce TiN barrier films in the contact process. Secondary ion mass spectroscopy results indicate that the SFCVD TiN film can effectively block the diffusion of WF6 into the underlying Ti layer during W deposition. NH3 treatment immediately after film deposition causes SFCVD TiN films to be less contaminated with carbon than TiN films that are formed by metallic organic compounds chemical vapor deposition (MOCVD) and to contain less chlorine residue than conventional TiCl4/NH3 CVD TiN layers even at a low reaction temperature. According to the resistance measurement of Kelvin contacts, the SFCVD process yields a lower resistance and a more uniform distribution than the MOCVD or CVD process. Transmission electron microscopic observations demonstrate that WF6 can diffuse through the MOCVD TiN to react with the underlying Ti layer, causing a rupture at the Ti/TiN interface and poor W adhesion. The SFCVD TiN can serve as a sufficient diffusion barrier against WF6 penetration during W CVD deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号