首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
We have fabricated a novel image sensor using Cu(In,Ga)Se2 (CIGS). A combined process of dry etching using HBr and Ar gasses and wet etching using dilute HCl solution was developed as isolation process of CIGS photodiode deposited at 400 °C. Etchant residues of the dry etching, which consist of Cu complex, were almost completely cleaned using the wet etching process and favorable vertical side wall of CIGS films was obtained without mechanical damages. As a result, high performance image sensors with low leakage current of ~ 10− 8 A/cm2 and wide wavelength range up to ~ 1240 nm were achieved. The developed image sensor consisted of 352 × 288 pixels with 10 µm × 10 µm pixel sizes, was able to capture clear images of night scenes.  相似文献   

2.
K. Zakrzewska 《Vacuum》2004,74(2):335-338
Two classes of thin film gas sensors have been studied: TiO2 doped with Cr or Nb and TiO2-SnO2 mixed systems. Thin films have been prepared by the reactive sputtering from mosaic targets. It is demonstrated that titanium dioxide doped with Nb and Cr should be considered as a bulk sensor. Its performance is governed by the diffusion of point defects, i.e. very slow diffusion of Ti vacancies for TiO2: 9.5 at% of Nb and fast diffusion of oxygen vacancies in the case of TiO2: 2.5 at% Cr sensor. The corresponding response times are 55 min for TiO2: 9.5 at% of Nb and 20 s for TiO2: 2.5 at% Cr. In turn, sensors based on TiO2-SnO2, particularly those of the SnO2-rich composition, belong to the group of surface sensors.  相似文献   

3.
Instead of the sophisticated deposition processes and boron sources reported in literature, the study used the radio frequency magnetron sputtering method to prepare boron-doped diamond-like carbon (DLC) films with p-type conduction. The adopted sputtering targets were composed of boron pellets buried in a graphite disc. The undoped DLC films prepared exhibited n-type conduction, based on the Hall-effect measurement. For boron content ≥ 2.51 at.%, the films showed semiconductor behavior converted from n-type to p-type conduction after annealing at 450 °C. B-DLC films with a boron content of 5.91 at.% showed a maximum carrier concentration of 1.2 × 1019 cm−3, a mobility of 0.4 cm2/V s, and an electrical resistivity of 1.8 Ω cm. The results of XPS and Raman spectra indicated that the motion of boron atoms was thermally activated during post-annealing, helping promote the formation of C-B bonds in the films. Moreover, the doping of boron in DLC films decreased sp3 bonding and facilitated carbon atoms to form sp2 bonding and graphitization.  相似文献   

4.
This paper presents the fabrication of 3 × 3 flexible strain sensor arrays using conductive polymer solutions with fillers including carbon nano-fibers and multi-walled carbon nano-tubes. The strain sensor arrays were made on polyurethane substrates using patterned surface treatment and the tilted-drop process. Atmospheric plasma was used to enhance or reduce the surface energy in specific areas for patterned surface treatment. The performance of fabricated strain sensors made using conductive polymer solutions with different ingredients was investigated. The measured gauge factors were in the 0.34 to 7.98 range for the strain of 3-7%. Under a bending test exceeding 50 times at a 150° angle, sensor damage was not observed. The demonstrated fabrication method is capable of producing conductive polymer sensors with complex designs, high reliability and is suitable for mass production.  相似文献   

5.
A composite optical waveguide sensor, consisting of lithium iron phosphate (LiFePO4, LFP) as the sensing material, was constructed and utilized for the detection of volatile organic compound gases. Nano-LFP powder was prepared via the hydrothermal method and was subsequently utilized in a dip-coating procedure for the fabrication of LFP thin films. The effect of heat treating temperature on the refractive index of the thin films was studied. A glass optical waveguide gas sensor was fabricated by coating an LFP thin film on the surface of single-mode tin-diffused glass optical waveguide. The sensor was found to exhibit a linear response to xylene in the range of 50-1000 ppm, with response times of less than 5 s.  相似文献   

6.
A low-temperature deposition process employing aluminum-induced crystallization has been developed for fabrication of piezoresistive polycrystalline silicon (polysilicon) films on low cost and flexible polyimide substrates for force and pressure sensing applications. To test the piezoresistive properties of the polysilicon films, prototype pressure sensors were fabricated on surface-micromachined silicon nitride (Si3N4) diaphragms, in a half-Wheatstone bridge configuration. Characterization of the pressure sensor was performed using atomic force microscope in contact mode with a specially modified probe-tip. Low pressure values ranging from 5 kPa to 45 kPa were achieved by this method. The resistance change was found to be − 0.1% to 0.5% and 0.07% to 0.3% for polysilicon films obtained at 500 °C and 400 °C, respectively, for the applied pressure range.  相似文献   

7.
Hard and superlight thin films laminated with boron carbide have been proposed as candidates for strategic use such as armor materials in military and space applications. Aluminum magnesium boride (AlMgB) films are excellent candidates for these purposes. We prepared AlMgB films by sputter deposition using multiple unbalanced planar magnetrons equipped with two boron and one AlMg targets. The film morphology changed and the film's root mean square (rms) roughness varied from 1.0 to 18 nm as the power density of the AlMg target increased from 0.2 to 1.0 W/cm2 while the power density of each boron target was maintained at 2 W/cm2. Chemical analyses show dominating Al, Mg, B and trace elements of oxygen, carbon and argon. The film composition also varies with altering the power density supplied to the AlMg target. The film with an atomic ratio of Al:Mg:B = 1.38:0.64:1 exhibits the highest hardness (~ 30 GPa). This value surpasses the hardness of hydrogenated diamond-like carbon films (24-28 GPa) prepared by plasma enhanced chemical vapor deposition.  相似文献   

8.
The influence of the incorporation of boron in diamond-like carbon (DLC) films on the microstructure of the coatings has been investigated. The boron-containing DLC films (a-C:B) have been deposited by pulsed laser deposition (PLD) at room temperature in high vacuum conditions, by ablating graphite and boron targets either with a femtosecond pulsed laser (800 nm, 150 fs, fs-DLC) or with a nanosecond pulsed laser (248 nm, 20 ns, ns-DLC). Alternative ablation of the graphite and boron targets has been carried out to deposit the a-C:B films. The film structure and composition have been highlighted by coupling Field Emission Scanning Electron Microscopy, Electron Energy Loss Spectroscopy and High Resolution Transmission Electron Microscopy. Using the B K-edge, EELS characterization reveals the boron effect on the carbon bonding. Moreover, the plasmon energy reveals a tendency of graphitization associated to the boron doping. Pure boron particles have been characterized by HRTEM and reveal that those particles are amorphous or crystallized. The nanostructures of the boron-doped ns-DLC and the boron-doped fs-DLC are thus compared. In particular, the incorporation of boron in the DLC matrix is highlighted, depending on the laser used for deposition. Electrical measurements show that some of these films have potentialities to be used in low temperature thermometry, considering their conductivity and temperature coefficient of resistance (TCR) estimated within the temperature range 160-300 K.  相似文献   

9.
First step in the way to the fabrication of an all-solid microbattery for autonomous wireless sensor node, amorphous thin solid films of lithium phosphorus oxynitride (LiPON) were prepared by radio-frequency sputtering of a mixture target of P2O5/Li2O in ambient nitrogen atmosphere. The morphology, composition, and ionic conductivity were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and A.C. impedance spectroscopy. With a thickness of 1.4 μm, the obtained LiPON amorphous layer provided an ionic conductivity close to 6 × 10−7 S cm−1 at room temperature. MicroRaman UV spectroscopy study was successfully carried out for the first time on LiPON thin films to complete the characterization and bring further information on LiPON structure.  相似文献   

10.
The optical properties of boron- and phosphorus-doped polycrystalline silicon films with light (~ 1 × 1016 cm−3), moderate (~ 5 × 1017 cm−3) and heavy doping (~ 1 × 1019 cm−3) were investigated in this work. The films were prepared by solid-phase crystallization of evaporated amorphous silicon films on borosilicate glass. Tauc-Lorentz models with one or two oscillators were used to model both reflection and transmission data collected by a spectrophotometer over the wavelength range of 400 nm-2000 nm. The results indicate that the crystal quality of the films is improved by phosphorus doping, while boron has a negligible impact on the crystal quality. The poly-Si films exhibit greater absorption than c-Si for visible wavelengths. This enhanced absorption is believed to be associated with defected a-Si material at the grain boundaries and intra-grain defects.  相似文献   

11.
The design, fabrication and test of piezoresistive sensors based on nanocrystalline diamond (NCD) films are reported. The CoventorWare FEM calculations of the mechanical stress and geometrical deformations of a 3-D structure are used for a proper localization of the piezoresistor on the carrying substrate. The boron-doped piezoresistive sensing element was realized using a directed patterned growth of NCD film on SiO2/Si by microwave plasma-enhanced chemical vapour deposition (CVD). The gauge factor of boron-doped NCD films was investigated in the range from room temperature up to 200 °C and from 0 to 5 N of the applied force. These NCD piezoresistive sensor elements are compared with a Silicon-on-Insulator (SOI) based piezoresistive sensor and their high-temperature applications are discussed.  相似文献   

12.
X.N. Li  S.B. Li  H. Li  C. Dong  X. Jiang 《Thin solid films》2010,518(24):7390-7393
The preparation of iron-silicon films was performed onto Si (100) substrates by microwave electron cyclotron resonance (ECR) plasma source enhanced unbalance magnetron sputtering. The compositions, microstructures and properties of films under different sputtering powers and annealing conditions were characterized by AES, GAXRD, TEM and absorption spectrum techniques. The results described that the amorphous iron silicon films can be easily prepared by unbalance magnetron sputtering. Even the Fe/Si ratio deviated far from 1:2, such as Fe/Si = 1:14.8 or 1:10, the amorphous iron silicon film with semiconductor properties can also be obtained, which suggests that the Fe/Si ratio is not the only factor to determine whether the samples have semiconducting properties in iron silicon amorphous. After annealing at 850 °C for 4 h, the microstructure of nanometer β-FeSi2 embedded into amorphous Si still possesses semiconducting characteristics.  相似文献   

13.
Boron-doped diamond (BDD) films grown on the titanium substrate were used to study the electrochemical degradation of Reactive Orange (RO) 16 Dye. The films were produced by hot filament chemical vapor deposition (HFCVD) technique using two different boron concentrations. The growth parameters were controlled to obtain heavily doped diamond films. They were named as E1 and E2 electrodes, with acceptor concentrations of 4.0 and 8.0 × 1021 atoms cm−3, respectively. The boron levels were evaluated from Mott-Schottky plots also corroborated by Raman's spectra, which characterized the film quality as well as its physical property. Scanning Electron Microscopy showed well-defined microcrystalline grain morphologies with crystal orientation mixtures of (1 1 1) and (1 0 0). The electrode efficiencies were studied from the advanced oxidation process (AOP) to degrade electrochemically the Reactive Orange 16 azo-dye (RO16). The results were analyzed by UV/VIS spectroscopy, total organic carbon (TOC) and high-performance liquid chromatography (HPLC) techniques. From UV/VIS spectra the highest doped electrode (E2) showed the best efficiency for both, the aromaticity reduction and the azo group fracture. These tendencies were confirmed by the TOC and chromatographic measurements. Besides, the results showed a direct relationship among the BDD morphology, physical property, and its performance during the degradation process.  相似文献   

14.
Boron incorporated amorphous carbon (a-C:B) films were deposited by a filtered cathodic vacuum arc system using various percentage of boron mixed graphite cathodes. X-ray photoelectron spectroscopy (XPS) was employed to determine the properties of the films as a function of boron concentration. Deconvolutions of the XPS C 1s core level spectra were carried out using four different components. The relative fraction of sp3 bonding was then evaluated from the area ratio of the peaks at 285.0, 284.1 eV which were individually attributed to sp3 C-C, sp2 CC hybridizations. The results showed that the sp3 content of a-C:B film decreases from 73.8 to 58.6% for the films containing boron from 0.59 to 2.13 at.%, and then gradually reduced to 42.5% at a slower rate with boron concentration up to 6.04 at.%. Furthermore, a series of a-C:B films with fixed boron content (2.13 at.%) were prepared to identify the relationship between sp3 bonding and substrate bias. It was found that the fraction of sp3 bonding increased from 50.28% at the bias voltage of 0 V and reached a maximum value of 66.3% at −150 V. As the bias voltage increased up to −2000 V, the sp3 content decreased sharply to 43.9%.  相似文献   

15.
In this work a novel ozone detection at room temperature (RT) has been investigated. Two functional materials, ZnO and (W0.9Sn0.1)O3 − x (WS10) oxides, have been synthesized to prepare thick film gas sensors, both used in conventional heated mode as well as at RT assisted by UV irradiation. As a source of light, a light emitting diode (LED) of 400 nm peak wavelength was used. Under typical operating conditions of the UV-LED, the radiation flux density ? over the sensor was of about 5 · 1017 photons/cm2. Powders and films have been characterized by means of TG-DTA, SEM, TEM and XRD. Finally, electrical measurements have been performed on sensing films with the aim to compare conductive properties, surface barrier heights and ozone sensing features with and without UV irradiation. Despite the fact that two types of conventional heated sensors offered quite similar results with respect to ozone sensing, it turned out that, at RT and with the assistance of UV light, ZnO behaved excellently fast detecting ozone at concentrations down to 10 ppb, while for WS10 under the same operating conditions an opposite result was observed, i.e. very low response and long response time.  相似文献   

16.
Ruqiang Bao 《Thin solid films》2010,519(1):164-2642
Boron carbide thin films were deposited by radio frequency (RF) magnetron sputtering and characterized by X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and high resolution transmission electron microscopy. The results reveal that the structure of thin films deposited at substrate temperatures lower than 350 °C is amorphous. We found that there are four chemical states for carbon in amorphous boron carbide thin films deposited by RF magnetron sputtering. One is the segregated carbon in form of the graphitic inclusions in the thin film identified by Raman spectroscopy and Raman mapping using two strong peaks at ~ 1360 cm− 1 and ~ 1590 cm− 1, but the XPS results show that the graphitic inclusions do not connect to the substrate directly. On the surface the carbon forms C=O bonds characterized by the peak of C1s core level at 285.0 eV besides B-C bonds in the boron carbide with the peak of C1s being at 282.8 eV. The detailed analysis of B-C bonds in the boron carbide shows that there are two states for carbon atoms in B-C bonds: in the C-B-C models with C1s peak at 282.3 eV and in the icosahedra with C1s peak at 283.3 eV.  相似文献   

17.
Sol-gel wet-chemical techniques were used to prepare ZnO, Al-ZnO (Al:Zn = 1:10 mol/mol) and Cu-ZnO (Cu:Zn = 1:10 mol/mol) thin films for characterization as functional layers for chemiresistive oxygen sensors. Cu and Al minor components influence the ZnO films' topography and their thermally induced chemical and structural evolution. As prepared (room temperature) films have the structure of layered basic zinc acetate, a lamellar ZnO precursor. Upon annealing at temperatures through 973 K, the films display similar chemical evolution patterns—temperatures above 773 K are needed to completely desorb solvents and decompose precursors. Cu facilitates c-axis orientation of the film as its structure matures, while Al slows its crystallization. Chemiresistive sensors, fabricated by coating thin film functional layers onto interdigitated electrode (IDE) transducers, were evaluated for their responses to oxygen at operating temperatures through 873 K. A ZnO/IDE sensor displays high sensitivity for O2 at an intermediate temperature, 673 K, reflecting an optimal balance between surface O2 coverage and carrier availability. At 1:10 mol/mol Cu:Zn and Al:Zn, the developing ZnO structure cannot accommodate all minor component atoms. Surplus atoms accumulate in independent phases at grain boundaries, contributing to both high base resistances (in N2) and low sensitivity to oxygen.  相似文献   

18.
Boron and nitrogen-incorporated graphene thin films were grown on polycrystalline Ni substrates by thermal chemical vapor deposition using separate boron- and nitrogen-containing feedstocks. Boron and nitrogen atoms were incorporated in the film in almost equal amounts and the total content reached ∼28%. The film predominantly consisted of separate graphene and boron nitride domains. Carrier concentration in the graphene domains was estimated to be about 1 × 10−3 e/atom (3.8 × 1012 cm−2) from G band shift in Raman spectra.  相似文献   

19.
Highly oriented and transparent indium tin oxide (ITO) films have been deposited onto glass substrates by radio frequency magnetron sputtering at 648 K, under an oxygen partial pressure of 1 Pa. The effect of the sputtering power and annealing was studied. Transmission was measured with a double beam spectrometer and electrical analysis using four probe and Hall effect setup. Structural characterization of the films was done by X-ray diffraction. Characterization of the coatings revealed an electrical resistivity below 6.5 × 10− 3 Ω cm. The ITO films deposited at 648 K were amorphous, while the crystallinity improved after annealing at 700 K. The optical transmittance of the film was more than 80% in the visible region. The surface morphology examined by scanning electron microscopy appears to be uniform over the entire surface area, after annealing. The NO2 sensing properties of the ITO films were investigated. At a working temperature of 600 K, the ITO sensor showed high sensitivity to NO2 gas, at concentrations lower than 50 ppm.  相似文献   

20.
Tests performed using heptadentate Schiff's base ((tris(3-(thiophenal)propyl)amine (TTA)) toward Fe(III) ions indicated that it could be used as an Fe(III) selective ionophore to be used in a plasticized polymeric membrane sensor. The resulting sensors were found to produce a linear response range of five orders of magnitude with a slope of 19.8 ± 0.3 mV decade− 1 with a detection limit is 8.3 × 10− 9 mol L− 1. The sensor could be used in a pH window of 2.4-4.3 and the response time of the sensor was below 10 s, in addition to its very good Fe(III) selectivity over many mono-,di- and trivalent transition and heavy metal ions. The life time of the electrode was found to be at least 10 weeks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号