首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The ZnO homojunction fabricated from undoped and 1 mol% AlN doped (codoped) ZnO targets by RF magnetron sputtering has been reported. The grown films on Si (100) substrate have been characterized by X-ray diffraction (XRD), Energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), Photoluminescence (PL) and Hall measurements. The increase of d-space value (compared with unstressed bulk) found from XRD for AlN codoped ZnO film supports the formation of p-ZnO due to the N incorporation. The presence of N in the film has been confirmed by EDS and XPS analysis. Further, the p-conductivity in AlN codoped ZnO has been evidenced by low temperature PL (donor-acceptor-pair emission) and room temperature PL (red shift in near-band-edge emission). Hall measurement shows that 1 mol% AlN codoped ZnO has the hole concentration of 3.772 × 1019 cm−3. The fabricated homojunction with 1% AlN doped ZnO (p-type) and undoped ZnO (n-type) exhibits a typical rectification behavior with high breakdown voltage, and rectification ratio, 13.4. The junction parameters such as ideality factor, barrier height and series resistance have also been calculated for the fabricated p-n junction. The energy band diagram has been proposed for the fabricated homojunction.  相似文献   

2.
《Materials Letters》2007,61(11-12):2307-2310
The present study reveals the codoping of Ga and N into ZnO films on sapphire substrates by pulsed laser deposition (PLD) with GaN doped ZnO targets. The glow discharge mass spectroscopy (GDMS) spectra confirm the presence of Ga and N in the doped films. The XRD measurements show that for GaN concentration up to 0.8 mol%, the full width at half maximum (FWHM) is almost unchanged thereby maintaining the crystallinity of the films, while for 1 mol% the FWHM increases. The PL spectra only show the strong near band edge (NBE) emission, whereas the deep level emissions are almost undetectable, indicating that they have been considerably suppressed. Our Hall measurements indicate that all the GaN doped ZnO films are of n-type. However, as the GaN concentration is greater than 0.6 mol%, the film shows a decrease in the carrier concentration, suggesting that N acceptors are not sufficient to compensate the native donor defects.  相似文献   

3.
S. Nagar 《Thin solid films》2010,518(16):4542-4452
Successful p-type ZnO thin films have been reported by depositing it on semi insulating GaAs substrates by Pulsed Laser Deposition (PLD) technique. The PLD samples were subsequently subjected to Rapid Thermal Annealing to achieve the required doped ZnO. X-ray Diffraction, Atomic Force Microscopy and Van der Pauw Hall measurements were performed on the annealed samples and compared with as-deposited ones. The XRD results confirm growth of <002> ZnO along with better crystallinity for the annealed sample. The AFM results reveal that the thin films deposited were highly uniform having very low roughness values. Van der Pauw Hall measurements show a transition from n-type conductivity for as-deposited sample to p-type for annealed samples. The hole concentration and Hall mobility measured were reported to be as high as 4.475 × 1020 cm− 3 and 39.73 cm2/V-sec respectively. These are probably the highest reported values to date and are encouraging from the point of successful fabrication of efficient ZnO-based optoelectronics devices like LED, laser, photodiodes, etc. in the near future.  相似文献   

4.
Sodium and nitrogen dual acceptor doped p-type ZnO (ZnO:(Na, N)) films have been prepared by spray pyrolysis technique at a substrate temperature of 623 K. The ZnO:(Na, N) films are grown at a fixed N doping concentration of 2 at.% and varying the nominal Na doping concentration from 0 to 8 at.%. The XRD results show that all the ZnO:(Na, N) films exhibited (0 0 2) preferential orientation. The EDX and elemental mapping analysis shows the presence and distribution of Zn, O, Na and N in the deposited films. The Hall measurement results demonstrate that the Na–N dual acceptor doped ZnO films show excellent p-type conduction. The p-type ZnO:(Na, N) films with comparatively low resistivity of 5.60 × 10−2 Ω cm and relatively high carrier concentration of 3.15 × 1018 cm−3 are obtained at 6 at.%. ZnO based homojunction is fabricated by depositing n-type layer (Eu doped ZnO) grown over the p-type layer ZnO:(Na, N). The current–voltage (I–V) characteristics measured from the two-layer structure show typical rectifying characteristics of p-n junction with a low turn on voltage of about 1.69 V. The ZnO:(Na, N) films exhibit a high transmittance (about >90%) and the average reflectance is 8.9% in the visible region. PL measurement shows near-band-edge (NBE) emission and deep-level (DL) emission in the ZnO:(Na, N) thin films.  相似文献   

5.
CdO doped (doping concentration 0, 1, 3 and 16 wt%) ZnO nanostructured thin films are grown on quartz substrate by pulsed laser deposition and the films are annealed at temperature 500 °C. The structural, morphological and optical properties of the annealed films are systematically studied using grazing incidence X-ray diffraction (GIXRD), energy dispersive X-ray analysis (EDX), scanning electron microscopy (SEM), atomic force microscopy (AFM), Micro-Raman spectra, UV–vis spectroscopy, photoluminescence spectra and open aperture z-scan. 1 wt% CdO doped ZnO films are annealed at different temperatures viz., 300, 400, 500, 600, 700 and 800 °C and the structural and optical properties of these films are also investigated. The XRD patterns suggest a hexagonal wurtzite structure for the films. The crystallite size, lattice constants, stress and lattice strain in the films are calculated. The presence of high-frequency E2 mode and the longitudinal optical A1 (LO) modes in the Raman spectra confirms the hexagonal wurtzite structure for the films. The presence of CdO in the doped films is confirmed from the EDX spectrum. SEM and AFM micrographs show that the films are uniform and the crystallites are in the nano-dimension. AFM picture suggests a porous network structure for 3% CdO doped film. The porosity and refractive indices of the films are calculated from the transmittance and reflectance spectra. Optical band gap energy is found to decrease in the CdO doped films as the CdO doping concentration increases. The PL spectra show emissions corresponding to the near band edge (NBE) ultra violet emission and deep level emission in the visible region. The 16CdZnO film shows an intense deep green PL emission. Non-linear optical measurements using the z-scan technique indicate that the saturable absorption (SA) behavior exhibited by undoped ZnO under green light excitation (532 nm) can be changed to reverse saturable absorption (RSA) with CdO doping. From numerical simulations the saturation intensity (Is) and the effective two-photon absorption coefficient (β) are calculated for the undoped and CdO doped ZnO films.  相似文献   

6.
Ga doped ZnO (GZO) and GaP codoped ZnO (GPZO) thin films of different concentrations (1–4 mol%) have been grown on sapphire substrates by RF sputtering for the fabrication of ZnO homojunction. The grown films have been characterized by X-ray diffraction (XRD), photoluminescence (PL), Hall measurement, energy dispersive spectroscopy (EDS), time-of-flight secondary ion mass spectrometer (ToF-SIMS), UV–Vis–NIR spectroscopy and atomic force microscopy (AFM). Unlike in conventional codoping, here we directly doped (codoped) GaP into ZnO to realize p-ZnO. The Hall measurements indicate that 2 and 4% GPZO films exhibit p-conductivity due to the sufficient amount of phosphorous incorporation while all the monodoped GZO films showed n-conductivity as expected. Among the p-ZnO films, 2% GPZO film shows low resistivity (2.17 Ωcm) and high hole concentration (1.8 × 1018 cm?3) by optimum incorporation of phosphorous due to best codoping. Similarly, among the n-type films, 2% GZO shows low resistivity (1.32 Ωcm) and high electron concentration (2.02 × 1019 cm?3) by optimum amount of Ga incorporation. The blue shift and red shift in NBE emission observed from PL acknowledged the formation of n- and p-conduction in monodoped and codoped films, respectively. The neutral acceptor bound exciton recombination (A0X) observed by low temperature PL for 2% GPZO confirms the p-conductivity. Further, the high concentration of P atoms than Ga observed from ToF-SIMS (2% GPZO) also supports the p-conductivity of the films. The fabricated p–n junction with best codoped p-(ZnO)0.98(GaP)0.02 and best monodoped n-Zn0.98Ga0.02O films showed typical rectification behavior of a diode. The diode parameters have also been estimated for the fabricated homojunction.  相似文献   

7.
Undoped ZnO films were grown on a c-plane sapphire by plasma-assisted molecular-beam epitaxy technique, and subsequently annealed at 200-500 °C with steps of 100 °C in water vapour and hydrogen ambient, respectively. It is found that the c-axis lattice constant of the ZnO films annealed in hydrogen or water vapour at 200 °C increases sharply, thereafter decreases slowly with increasing annealing temperature ranging from 300 °C to 500 °C. The stress in the as-grown ZnO films was more easily relaxed in water vapour than in hydrogen ambient. Interestingly, the controversial luminescence band at 3.310 eV, which is often observed in photoluminescence (PL) spectra of the ZnO films doped by p-type dopants, was observed in the PL spectra of the annealed undoped ZnO films and the PL intensity increases with increasing annealing temperature, indicating that the 3.310 eV band is not related to p-type doping of ZnO films. The electron concentration of the ZnO films increases sharply with increasing annealing temperature when annealed in hydrogen ambient but decreases slowly when annealed in water vapour. The mechanisms of the effects of annealing ambient on the properties of the ZnO films are discussed.  相似文献   

8.
MgZnO (magnesium-zinc-oxide) films were grown on (11-20) sapphire substrates and Zn-polar ZnO substrates by plasma enhanced metal-organic chemical vapor deposition (PE-MOCVD) employing microwave-excited plasma. Structural, electrical and optical properties were investigated by X-ray diffraction, atomic force microscope, Hall, transmittance and photoluminescence measurement. The c-axis lattice constant decreases proportionally to an increase in the Mg content of MgxZn1 − xO films. Therefore, this indicates that Mg atoms can be substituted in the Zn sites. Mg contents in films on ZnO substrates increase up to 0.11. In addition, Ga doped ZnO films were grown on (11-20) sapphire substrates. The resistivity of the films on (11-20) sapphire is controlled between 1.2 × 10− 3 Ω cm to 1 Ω cm by changing the process conditions. The overall results indicate the promising potential of this PE-MOCVD method for related (Zn, Mg)O films formation because of the reactivity of the radicals, such as oxygen radicals (O?).  相似文献   

9.
We report on the growth of p-type ZnO thin films with improved stability on various substrates and study the photoconductive property of the p-type ZnO films. The nitrogen doped ZnO (N:ZnO) thin films were grown on Si, quartz and alumina substrates by radio frequency magnetron sputtering followed by thermal annealing. Structural studies show that the N:ZnO films possess high crystallinity with c-axis orientation. The as-grown films possess higher lattice constants compared to the undoped films. Besides the high crystallinity, the Raman spectra show clear evidence of nitrogen incorporation in the doped ZnO lattice. A strong UV photoluminescence emission at ~ 380 nm is observed from all the N:ZnO thin films. Prior to post-deposition annealing, p-type conductivity was found to be unstable at room temperature. Post-growth annealing of N:ZnO film on Si substrate shows a relatively stable p-type ZnO with room temperature resistivity of 0.2 Ω cm, Hall mobility of 58 cm2/V s and hole concentration of 1.95 × 1017 cm− 3. A homo-junction p-n diode fabricated on the annealed p-type ZnO layer showed rectification behavior in the current-voltage characteristics demonstrating the p-type conduction of the doped layer. Doped ZnO films (annealed) show more than two orders of magnitude enhancement in the photoconductivity as compared to that of the undoped film. The transient photoconductivity measurement with UV light illumination on the doped ZnO film shows a slow photoresponse with bi-exponential growth and bi-exponential decay behaviors. Mechanism of improved photoconductivity and slow photoresponse is discussed based on high mobility of carriers and photodesorption of oxygen molecules in the N:ZnO film, respectively.  相似文献   

10.
Xiaofeng Xu  Wei Hu  Jushui Lai  Zhifeng Ying  Jiada Wu 《Vacuum》2010,84(11):1306-1309
Pulsed laser deposition has been utilized to synthesize impurity-doped ZnO thin films on silicon substrate. Large-sized-mismatched group-V elements (AV) including P, As, Sb and Bi were used as dopants. Hall effect measurements show that hole concentration in the order of 1016-1018 cm−3, resistivity in the range of 10-100 Ω cm, Hall mobility in the range of 10-100 cm2/Vs were obtained only for ZnO:As and ZnO:Bi thin films. X-ray diffraction measurements reveal that the films possess polycrystallinity or nanocrystallinity with ZnO (002) preferred orientation. Guided by X-ray photoemission spectroscopy analyses and theoretical calculations for large-sized-mismatched group-V dopant in ZnO, the AZnV-2VZn complexes are believed to be the most possible acceptors in the p-type AV-doped ZnO thin films.  相似文献   

11.
Yong Zoo You 《Thin solid films》2007,515(5):2860-2863
Aluminum nitride (AlN) films were reactively deposited on (100) oriented silicon substrates by reactive radio frequency (RF) magnetron sputtering for different incidence angles and distances between substrate and target.X-ray diffraction (XRD), atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to consider the influence of process parameters such as reactive gas flow rate, grazing incidence angle (α), and distance (d) between substrate and target surface on the property of AlN films. XRD results showed that AlN film prepared at a constant distance (d) of 3 cm and an incidence angle of 45° revealed a mixture of AlN (002), (100), and (101) planes, while the film prepared at α = 0° revealed a strong AlN (002) orientation which has a perpendicular growth direction to the substrate surface. AFM results showed that AlN film prepared at α = 0° exhibited more flat surface morphology than that of film prepared at α = 45°.  相似文献   

12.
J.S. Cherng  D.S. Chang 《Vacuum》2009,84(5):653-197
A series of studies on the pulsed-DC reactive sputtering of highly (002)-textured aluminum nitride (AlN) thin films was conducted with systematically adjusted pulse parameters including reverse voltage, pulse frequency, and pulse duration. The film quality was evaluated by the full width at half maximum (FWHM) of the (002) rocking curve as well as the (002) peak intensity. In the asymmetric bipolar mode, the FWHM increases while the peak intensity decreases with reverse voltage, implying a detrimental effect of reverse voltage on the quality of AlN film. Whereas in the unipolar mode, the film quality improves with pulse frequency as evidenced by the decreasing FWHM and increasing peak intensity. It is also found that there is a critical pulse duration of about 500 μs, beyond which the FWHM starts to increase while the peak intensity starts to decrease due to target poisoning. Typical measurements on thus-optimized AlN film show a roughness of 1.7 nm and a (002) FWHM of less than 1.9°.  相似文献   

13.
Highly c-axis oriented ZnO thin films were grown on Si (100) substrates with Zn buffer layers. Effects of the Zn buffer layer thickness on the structural and optical qualities of ZnO thin films were investigated for the ZnO films with the buffer layers 90, 110, and 130 nm thick using X-ray diffraction (XRD), photoluminescence (PL) and atomic force microscopy (AFM) analysis techniques. It was confirmed that the quality of a ZnO thin film deposited by RF magnetron sputtering was substantially improved by using a Zn buffer layer. The highest ZnO film quality was obtained with a Zn buffer layer 110 nm thick. The surface roughness of the ZnO thin film increases as the Zn buffer layer thickness increases.  相似文献   

14.
15.
L.P. Dai  G. Chen  C.F. Tang  M. Wei  Y. Li 《Vacuum》2007,81(8):969-973
Zinc oxide (ZnO) films were grown on silicon (1 0 0) substrates by single-source chemical vapor deposition (SSCVD). X-ray diffraction (XRD) showed that ZnO thin films have a polycrystalline hexagonal wurtzite structure with (1 0 0) and (1 0 1) orientation, i.e., a-b-axis orientation. Atomic force microscopy (AFM) and scanning electronic microscopy (SEM) showed the films to be of relatively high density with a smooth surface. X-ray photoelectron spectroscopy (XPS) showed that the deposited films were very close to stoichiometry but contained a small number of zinc instead of O vacancies as normally found with ZnO films produced by other methods. These results were also confirmed by photoluminescence (PL) measurements.  相似文献   

16.
Zinc oxide (ZnO) thin films have been grown on Si (100) substrates using a femto-second pulsed laser deposition (fsPLD) technique. The effects of substrate temperature and laser energy on the structural, surface morphological and optical properties of the films are discussed. The X-ray diffraction results show that the films are highly c-axis oriented when grown at 80 °C and (103)-oriented at 500 °C. In the laser energy range of 1.0 mJ-2.0 mJ, the c-axis orientation increases and the mean grain size decreases for the films deposited at 80 °C. The field emission scanning electron microscopy indicates that the films have a typical hexagonal structure. The optical transmissivity results show that the transmittance increases with the increasing substrate temperature. In addition, the photoluminescence spectra excited with 325 nm light at room temperature are studied. The structural properties of ZnO films grown using nanosecond (KrF) laser are also discussed.  相似文献   

17.
We present electrical and magnetic properties of ZnO films doped with 3d (Mn) and 4f (Gd or Nd) magnetic ions grown on a-plane Al2O3 substrates. Both for films doped with 3d magnetic ions and for films doped with 4f magnetic ions, Hall investigations revealed that the carrier concentration decreases and the resistivity increases with increasing the oxygen partial pressure during the pulsed laser deposition growth, probably because the formation of oxygen vacancies is hindered. Measurements of magnetic properties revealed ferromagnetism above room temperature with magnetic moments up to 0.2 μB/Mn ion in insulating ZnO:Mn films co-doped with 0.1% P and up to 0.3 μB/Gd ion in n-conducting ZnO:Gd films co-doped with 0.2% Al.  相似文献   

18.
Wang Zhaoyang  Hu Lizhong 《Vacuum》2009,83(5):906-875
ZnO thin films were grown on Si (111) substrates by pulsed laser deposition (PLD) at various oxygen pressures in order to investigate the structural and optical properties of the films. The optical properties of the films were studied by photoluminescence spectra using a 325 nm He-Cd laser. The structural and morphological properties of the films were investigated by XRD and AFM measurements, respectively. The results suggest that films grown at 20 Pa and 50 Pa have excellent UV emission and high-quality crystallinity. The research of PL spectra indicates that UV emission is due to excitonic combination, the green band is due to the replacing of Zn in the crystal lattice for O and the blue band is due to the O vacancies.  相似文献   

19.
Nickel oxide (NiO) thin films were prepared on glass substrates at various bias voltages using dc reactive magnetron sputtering technique. The influence of substrate bias voltage on structural, optical and electrical properties was systematically investigated using X-ray diffraction (XRD), SEM, EDS, spectrophotometer and Hall effect studies. The NiO films are crystalline with preferential growth along (2 0 0) plane. The NiO films exhibit optical transmittance of 55% and direct band gap of 3.78 eV at the substrate bias voltage of −75 V. The electrical resistivity decreases as substrate bias voltage increases from 0 to −75 V thereafter it was slightly increased.  相似文献   

20.
ZnO films were deposited by metal-organic chemical vapor deposition on (0001) sapphire substrates at various partial pressure ratios of oxygen and zinc precursors (RVI/II). The annealing and the RVI/II ratio effects on the vibrational and optical properties of ZnO films have been investigated by Micro-Raman scattering and low temperature photoluminescence (PL) spectroscopy. As confirmed by characterizations used in this study, the quality of the ZnO films was improved by thermal annealing at 900 °C in oxygen ambient. Raman spectra of the as-deposited films show a broad band (BB) centered at about 518 cm−1 whose intensity increases when the RVI/II ratio decreases. After annealing, the intensity ratio of the BB to the E2 high (E2H) peak decreases rapidly with increasing the annealing time (tan). The vibrational properties of the annealed films grown at RVI/II = 1 need only 1 h to be improved in contrast to those of films grown in Zn-rich condition, which need 4 h. From the E2H mode frequency, the residual stress in both the as-grown and the annealed films has been estimated. Micro-Raman measurements show that as-grown films are under a compressive stress which vanishes upon annealing and is not strongly dependent on tan for tan up to 1 h. PL spectra show that sharp donor bound exciton and A-free exciton emissions are observed for the as-deposited films grown at RVI/II ≥ 0.5 and are enhanced after annealing for 1 h. However, in ZnO films grown in Zn-rich condition these emissions are absent and a tan = 4 h is needed to annihilate non-radiative recombination centers and improve their luminescent efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号