首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents spatial structure optimization results and calculated electronic spectra for ZrGe n ? (n = 8–20) anion clusters. Comparison of density-functional calculation results and available experimental data allows us to identify real spatial structures of the clusters. The formation of stable endohedral ZrGe n ? clusters is possible for n ≥ 12. The clusters with a smaller number of germanium atoms predominantly have exohedral structures.  相似文献   

2.
The temperature dependences of thermal expansion and isothermal compressibility for TlGaTe2 indicate that this compound undergoes a second-order phase transition at 98 K. The experimental data are used to evaluate the Debye characteristic temperature, rms dynamic atomic displacements, specific heat difference C p - C V , and Gruneisen parameter. The appreciable discrepancy between the C p - C V values calculated using thermodynamic relations and an empirical formula is attributed to the pronounced anisotropy of TlGaTe2 crystals.  相似文献   

3.
The critical behavior of perovskite manganite La0.67Ba0.33Mn0.95Fe0.05O3 at the ferromagnetic–paramagnetic has been analyzed. The results show that the sample exhibited the second-order magnetic phase transition. The estimated critical exponents derived from the magnetic data using various such as modified d’Arrott plot Kouvel–Fisher method and critical magnetization M(T C, H). The critical exponents values for the La0.67Ba0.33Mn0.95Fe0.05O3 are close to those expected from the mean field model β = 0.504 ± 0.01 with T C = 275661 ± 0.447 (from the temperature dependence of the spontaneous magnetization below T C ), γ = 1.013 ± 0.017 with T C = 276132 ± 0.452 (from the temperature dependence of the inverse initial susceptibility above T C ), and δ = 3.0403 ± 0.0003. Moreover, the critical exponents also obey the single scaling equation of M(H, ε) = |ε| β f ±(H/|ε| β+γ ).  相似文献   

4.
We present an extensive study of the magnetic properties of a novel La0.5Ba0.5MnO3 perovskite material prepared by the hydrothermal method. The explored sample was structurally studied by the x-ray diffraction (XRD) method which confirms the formation of a pure cubic phase of a perovskite structure with Pm3m space group. The magnetic properties were probed by employing temperature M (T) and external magnetic field M (μoH) dependence of magnetization measurements. A magnetic phase transition from ferromagnetic to paramagnetic phase occurs at 339 K in this sample. The maximum magnetic entropy change (\(\left | {{\Delta } S}_{M}^{\max } \right |\)) took a value of 1.4 J kg??1 K??1 at the applied magnetic field of 4.0 T for the explored sample and has also been found to occur at Curie temperature (TC). This large entropy change might be instigated from the abrupt reduction of magnetization at TC. The magnetocaloric effect (MCE) is maximum at TC as represented by M (μoH) isotherms. The relative cooling power (RCP) is 243.2 J kg??1 at μoH =?4.0 T. Moreover, the critical properties near TC have been probed from magnetic data. The critical exponents δ, β, and γ with values 3.82, 0.42, and 1.2 are close to the values predicted by the 3D Ising model. Additionally, the authenticity of the critical exponents has been confirmed by the scaling equation of state and all data fall on two separate branches, one for T < TC and the other for T > TC, signifying that the critical exponents obtained in this work are accurate.  相似文献   

5.
Gd2Sn2O7 gadolinium stannate with the pyrochlore structure has been prepared by solid-state reaction and its high-temperature heat capacity has been determined by differential scanning calorimetry in the temperature range 350–1020 K. The Cp(T) data are shown to be well represented by the classic Maier–Kelley equation. The experimental Cp(T) data have been used to evaluate the thermodynamic functions of gadolinium stannate: enthalpy increment H°(T)–H°(339 K), entropy change S°(T)–S°(339 K), and reduced Gibbs energy Ф°(Т).  相似文献   

6.
We consider unitary transformations on a bipartite system A × B. To what extent entails the ability to transmit information from A to B the ability to transfer information in the converse direction? We prove a dimension-dependent lower bound on the classical channel capacity C(AB) in terms of the capacity C(AB) for the case that the bipartite unitary operation consists of controlled local unitaries on B conditioned on basis states on A. If the local operations are given by the regular representation of a finite group G we have C(AB) = log |G| and C(AB) = log N where N is the sum over the degrees of all inequivalent representations. Hence the information deficit C(AB) ? C(AB) between the forward and the backward capacity depends on the “non-abelianness” of the control group. For regular representations, the ratio between backward and forward capacities cannot be smaller than 1/2. The symmetric group S n reaches this bound asymptotically. However, for the general case (without group structure) all bounds must depend on the dimensions since it is known that the ratio can tend to zero. Our results can be interpreted as statements on the strength of the inevitable backaction of a quantum system on its controller.  相似文献   

7.
Specific heats C v and C p, entropy S, enthalpy H, and speed of sound W have been calculated using a new thermal equation of state with a small number of variable constants, which includes regular and scale contributions with a new transition function. The calculation results correspond to the accuracy level of the modern reference equations of state with a large number of determined parameters in the regular behavioral region of SF6 properties; in the critical region, these results make it possible to supplement the existing reference data with the related tables, taking into account the scaling-theory advances. The experimental and tabular data on C v, C p, S, H, and W have not been used to determine the constants of the calculation equations (except for isochoric specific heat, C v, in the ideal-gas state). These data have been applied only for comparison of the calculated values with the experimental and tabular values. To calculate the behavior of thermal properties in the critical region, universal critical indices α, β, and γ have been used according to the threedimensional Ising model. The mean error in describing thermal properties of SF6 does not exceed the error of the existing experimental data. The calculated values coincide with the modern reference data in the regular region in the entire range of gas and liquid states. The discrepancies in the critical region are due to the application of the scale equation of state (in contrast to the regular equations used previously in this region for composing reference tables).  相似文献   

8.
The existence of two polytypes at room temperatures, C-TlInS2 and 2C-TlInS2, with different monoclinic cell parameters, c and 2c, has been revealed. Significant differences in crystal lattice dynamics of these polytypes have been found. In particular, two phase transitions (PTs) have been detected for the polytype C-TlInS2 as the temperature varies: a second-order PT from paraphase to incommensurate phase at T i = 215 K and a first-order ferroelectric PT accompanied by a quadrupling of the parameter c at T c = 197 K. No PT accompanied by an increase in unit cell parameter c has been found in the polytype 2C-TlInS2, but a global temperature hysteresis characteristic of crystals with an incommensurately modulated structure has been detected at T = 180–230 K.  相似文献   

9.
This paper expands on a theoretical model between the mechanical and electrical properties with acoustic characteristics to obtain the theoretical dispersion curve for Y-cut LiNbO3 piezoelectric plate. The experimental dispersion curve of the LiNbO3 plate is extracted via V(f,z) analysis through defocusing measurements based on an acoustic microscopy and a lens-less line focusing transducer. The objective function of the inversion depends on the experimental dispersion curve. The inversion method adopts a hybrid particle-swarm-based simulated-annealing (PS-B-SA) optimization, which is used for joint inversion of the mechanical and electrical parameters of LiNbO3. The theoretical dispersion curve will approach the experimental dispersion curve by constantly modifying the mechanical and electrical parameters in the theoretical model: the elastic constants (C11, C12, C22, C23, C25, C55), piezoelectric constants (e11, e12, e26, e33), and dielectric constants (ε11, ε22). The inversed series of constants are those who make the theoretical dispersion curve most fit the experimental ones. The results show that the inversed mechanical and electrical parameters agree well with the reported values, and the stability and accuracy of the inversion is acceptable. This research provides a useful tool to characterize the mechanical and electrical properties of piezoelectric materials simultaneously.  相似文献   

10.
Tb2Sn2O7 has been prepared by solid-state reaction in air at 1473 K over a period of 200 h and its isobaric heat capacity has been studied experimentally in the range 350–1073 K. The C p(T) data for this compound have no extrema and are well represented by the classic Maier–Kelley equation. The experimental C p(T) data have been used to evaluate the thermodynamic properties of terbium stannate (pyrochlore structure): enthalpy increment H°(T)–H°(350 K), entropy change S°(T)–S°(350 K), and reduced Gibbs energy Ф°(Т).  相似文献   

11.
The ceramic technology is employed for synthesizing manganites of composition Nd Mg 3 I Mg3Mn4O12(MeI-Li, Na, K). The X-ray technique is used to find that the compounds crystallize in tetragonal syngony. The parameters of their crystal lattices are determined. Their heat capacities are experimentally determined in the range from 298.15 to 673 K, which enables one to reveal second-order phase transitions. In view of these transitions, equations describing the C p ° f(T) dependence are derived, and the thermodynamic functions C p ° (T), H°(T)-H°(298.15), S°(T), and Φ xx (T) are calculated.  相似文献   

12.
Interaction of hydrogen with the intermetallic compound Nd2Fe17 has been studied for the first time by calorimetry using a differential heat conduction calorimeter coupled to a Sieverts apparatus. Hydrogen absorption and desorption reactions were run at 200°C, and two types of data were obtained: p–C–T and ΔH–C–T (where p is the equilibrium hydrogen pressure, C = H/Nd2Fe17, ΔH is the reaction enthalpy, and T is the measurement temperature). The p–C–T curves obtained for the hydrogen absorption and desorption processes have no plateau or two-phase region, in contrast to what is characteristic of the formation of a hydride phase. At the same time, the ΔH(C) curves have a few portions where the enthalpy of reaction between hydrogen and the intermetallic compound remains constant: 0 < C < 2.0, with ΔH abs =–85.05 ± 0.65 kJ/mol H 2; 2.0 < C < 2.7, with ΔH abs =–80.64 ± 1.00 kJ/mol H2; and 1.9 < C < 2.7, with ΔH des = 76.48 ± 0.85 kJ/mol H2. The data obtained in this study suggest that positions 9e and 18g in the intermetallic compound are occupied by hydrogen in a particular order.  相似文献   

13.
Enhancing the critical temperature (T C ) is important not only to widen the practical applications but also to expand the theories of superconductivity. Inspired by the meta-material structure, we designed a smart meta-superconductor consisting of MgB2 microparticles and Y2O3/Eu3+ nanorods. In the local electric field, Y2O3/Eu3+ nanorods generate an electroluminescence (EL) that can excite MgB2 particles, thereby improving the T C by strengthening the electron–phonon interaction. An MgB2-based superconductor doped with one of four dopants of different EL intensities was prepared by an ex situ process. Results showed that the T C of MgB2 doped with 2 wt% Y2O3, which is not an EL material, is 33.1 K. However, replacing Y2O3 with Y2O3/Eu3+II, which displays a strong EL intensity, can improve the T C by 2.8 to 35.9 K, which is even higher than that of pure MgB2. The significant increment in T C results from the EL exciting effect. Apart from EL intensity, the micromorphology and degree of dispersion of the dopants also affected the T C . This smart meta-superconductor provides a new method to increase T C .  相似文献   

14.
We report first-principles calculations of the elastic properties, electronic structure and magnetic behavior performed over the Ba2NiMoO6 double perovskite. Calculations are carried out through the full-potential linear augmented plane-wave method within the framework of the Density Functional Theory (DFT) with exchange and correlation effects in the Generalized Gradient and Local Density Approximations, including spin polarization. The elastic properties calculated are bulk modulus (B), the elastic constants (C11, C12 and C44), the Zener anisotropy factor (A), the isotropic shear modulus (G), the Young modulus (Y) and the Poisson ratio (υ). Structural parameters, total energies and cohesive properties of the perovskite are studied by means of minimization of internal parameters with the Murnaghan equation, where the structural parameters are in good agreement with experimental data. Furthermore, we have explored different antiferromagnetic configurations in order to describe the magnetic ground state of this compound. The pressure and temperature dependence of specific heat, thermal expansion coefficient, Debye temperature and Grüneisen parameter were calculated by DFT from the state equation using the quasi-harmonic model of Debye. A specific heat behavior CV?≈?CP was found at temperatures below T = 400 K, with Dulong–Petit limit values, which is higher than those, reported for simple perovskites.  相似文献   

15.
We have developed a technology for obtaining homogeneous films based on fullerene-containing C60-CdTe and C60-CdSe composites. The surface morphology of the initial films is characterized by an average lateral roughness size of about 150 nm. Annealing in a vacuum of 10?5 Torr for 3 h showed that C60-CdSe films are stable at temperatures up to T=180°C, while the same treatment of films of the (C60)1?x(CdTe)x system with x<0.5 leads to the appearance of surface clusters of the semiconductor component with an average size of about 500 nm. The cluster density and size increase with the content of CdTe in the initial composite powder. The photoluminescence spectrum of a (C60)1?x(CdTe)x film with x=0.5 upon annealing displays a dominating peak at 730 nm, which is indicative of a significant modification of the film structure as a result of this post-growth treatment. It is demonstrated that fullerene-containing composite network nanostructures with a lateral resolution up to 250 nm can be created by direct electron-beam lithography.  相似文献   

16.
This study reports the effect of coronene (C24H12) addition on some superconducting properties such as critical temperature (Tc), critical current density (Jc), flux pinning force density (Fp), irreversibility field (Hirr), upper critical magnetic field (Hc2), and activation energy (U0), of bulk MgB2 superconductor by means of magnetisation and magnetoresistivity measurements. Disk-shaped polycrystalline MgB2 samples with varying C24H12 contents of 0, 2, 4, 6, 8, 10 wt%, were produced at 850 °C in Ar atmosphere. The obtained results show an increase in field-Jc values at 10 and 20 K resulting from the strengthened flux pinning, and a decrease in critical temperature (Tc) because of C substitution into MgB2 lattice, with increasing amount of C24H12 powder. The Hc2(0) and Hirr(0) values are respectively found as 144, 181, 172 kOe, and 128, 161, 145 kOe for pure, 4 wt% and 10 wt% C24H12 added samples. The U0 depending on the magnetic field curves were plotted using thermally activated flux flow model. The maximum U0 values are respectively obtained as 0.20, 0.23 and 0.12 eV at 30 kOe for pure, 4 wt% and 10 wt% C24H12 added samples. As a result, the superconducting properties of bulk MgB2 at high fields was improved using C24H12, active carbon source addition, because of the presence of uniformly dispersed C particles with nanometer order of magnitude, and acting as effective pinning centres in MgB2 structure.  相似文献   

17.
The calorimetric method is used to investigate the heat capacity of DyMeIICr2O5.5(MeII-Mg, Ca) chromites in the range from 298.15 to 673 K. The C p 0 f(T) curves exhibit λ-like effects at 348 and 548 K for DyMgCr2O5.5 and at 473 K for DyCaCr2O5.5, which apparently relate to second-order phase transitions. The temperature dependences are calculated for thermodynamic functions C p 0 (T), H 0(T)-H 0(298.15), S 0(T), and Φ**(T).  相似文献   

18.
We studied nearly optimally Ni-substituted BaFe2?x Ni x As2 (BFNA) single crystals with T C ≈ 18.5 K. In irreversible magnetization measurements, we determined the field dependence of the critical current density and discuss the nature of observed strong bulk pinning. Using intrinsic multiple Andreev reflections effect (IMARE) spectroscopy, we directly determine two distinct superconducting gaps and resolve their moderate anisotropy in the momentum space. The BCS-ratio for the large gap 2Δ L /k B T C > 4.1 evidences for a strong coupling in the Δ L -bands.  相似文献   

19.
By means of the low-temperature ultrasonic measurement, we try to observe the elastic softening due to the vacancies in as-grown silicon crystals grown by the Czochralski (CZ) method. We prepared a high-resistivity CZ silicon crystal ingot comprising the following defect-regions: the void region, the region of ring-like oxidation stacking fault, the Pv-region, the Pi-region, and the region of the dislocation clusters. Both of the elastic constants C 44(T) and [C 11(T) ? C 12(T)]/2 measured for the samples taken from the Pv-region exhibit the softening of the type C Γ(T) = C Γ (0) [1 ? ΔJT/(? Θ)] which was also found in our previous study for the non-doped FZ silicon and attributed to the neutral vacancy. No response of the softening to the applied magnetic field is found, as in our previous case of the non-doped FZ silicon. The observed softenings are attributed to the triply degenerate T 2 states of the vacancy accommodating two electrons with anti parallel spins. The samples in the Pi-region exhibit no such softening, confirming that the origin of the softening is the vacancies. A qualitative explanation is given to the measured distribution of the vacancy concentration.  相似文献   

20.
Cluster analysis is one of the popular data mining techniques and it is defined as the process of grouping similar data. K-Means is one of the clustering algorithms to cluster the numerical data. The features of K-Means clustering algorithm are easy to implement and it is efficient to handle large amounts of data. The major problem with K-Means is the selection of initial centroids. It selects the initial centroids randomly and it leads to a local optimum solution. Recently, nature-inspired optimization algorithms are combined with clustering algorithms to obtain the global optimum solution. Crow Search Algorithm (CSA) is a new population-based metaheuristic optimization algorithm. This algorithm is based on the intelligent behaviour of the crows. In this paper, CSA is combined with the K-Means clustering algorithm to obtain the global optimum solution. Experiments are conducted on benchmark datasets and the results are compared to those from various clustering algorithms and optimization-based clustering algorithms. Also the results are evaluated with internal, external and statistical experiments to prove the efficiency of the proposed algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号