首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The discharge characteristics and discharge gap of machining Ti–6Al–4V titanium alloy by cryogenically cooled tool electrode electrical discharge machining (EDM) in distilled water were investigated in this study using the monopulse discharge method. The influence of the cryogenically cooled tool electrode on the discharge gap and the initial maintaining voltage between the electrode and workpiece were analyzed under various temperatures. Test results showed the initial maintaining voltage of the cryogenically cooled tool electrode EDM was lower than that of conventional EDM. The discharge gap of the cryogenically cooled tool electrode EDM was also smaller than that of conventional EDM, which improved the copying accuracy of die-sinking EDM. A comparative experiment of machining Ti–6Al–4V titanium alloy was carried out by using cryogenically cooled tool electrode EDM and conventional EDM, lower electrode wear, higher material removal ratio, and higher corner size machining accuracy was obtained by using cryogenically cooled tool electrode EDM.  相似文献   

2.
Productivity and surface quality would significantly affect the performance of the micro electrical discharge machining process (µEDM). Thus, the machining performance would be enhanced by improving the material removal rate (MRR) and surface quality. In this investigation, cryogenic LN2 cooling was introduced to the conventional µEDM setup for developing an innovative process of cryogenically cooled µEDM process (CµEDM). The favorable outcomes of this process were estimated by selecting discharge current (Ip) and pulse on duration (Ton) for determining the effects of the machining performance including MRR and surface integrity. Surface quality was also analyzed by microstructural analysis and a scanning electron microscope (SEM) for evaluating the effects of the cryogenically cooled µEDM process. The experimental result shows 54–62% improvement in MRR and 22–36% improvement in average roughness values. Hence, it is suggested that cryogenically cooled µEDM facilitates improvement in productivity and surface quality.  相似文献   

3.
The performance of cryogenically assisted electric discharge machining (CEDM) process has been evaluated in the presented research paper. The machining of cryogenically treated (CT) and cryogenically untreated (CUT) AISI D2 tool steel work specimens using cryogenically cooled (CC), CT, and CUT copper electrodes have been performed. The effects of various parameters, namely, workpiece condition, tool condition, nozzle flushing, peak current, duty cycle, pulse duration, and gap voltage, have been studied on the performance indicators, viz. the material removal rate (MRR), tool wear rate (TWR), and surface roughness (SR). The best parametric combinations have been suggested to obtain the desired quality characteristics. The interaction effects among various parameters have also been presented. An increase of approximately 18% in MRR and a reduction of 26% and 11% in TWR and SR, respectively, were observed, during the machining through CEDM in contrast to EDM. The confirmatory experiments suggested that experimental values were in permissible agreement with the predicted values for all the performance measures. Finally, the comparison of the CEDM with that of EDM process, in the light of SEM graphs, has been presented.  相似文献   

4.
Electrical discharge machining (EDM) is a thermal material removal process by means of electrical discharge. Because of the stochastic nature of the EDM process, electro-thermal energy conversion in the discharge zone is still not well understood. In this paper, an inverse optimal control problem was used for analysis and optimization of energy conversion processes in order to improve machining efficiency. Modeling and identification of a thermal process were conducted using the inverse heat transfer problem based on the known temperature within a workpiece. In addition to the temperature field, this approach allows the determination of unknown heat flux density distribution on the workpiece surface. By using the heat flux, the inverse optimal control problem based on minimizing a Tikhonov functional allows to obtain the optimal heat source parameters (discharge power and discharge duration) on the discharge energy. In this context, the concept of inverse problem allows reliable determination of the optimal discharge energy to achieve the highest possible productivity with the desired quality. The performance of prediction of the heat affected zone compared to the experimental results showed a good agreement, which confirms the validity of the inverse method compared to the reported models.  相似文献   

5.
Micro electrical discharge machining (µEDM) is playing a significant role in the world of miniaturization, especially in micro electro mechanical systems, biomedical devices, micro die/molds, etc. Micro electrical discharge milling (µED-milling) is a variant of µEDM used for producing complex 3D features with a simple shaped tool. The material removal mechanism of µEDM depends on electro-thermal energy between the tool electrode and workpiece. µEDM inherently being a non-contact machining process, leads to produce miniaturized features in hard to machine materials. Besides erosion of the workpiece material, intrinsic feature of the process leads to tool wear (TW) and introduces dimensional inaccuracy in the micro features. Thus, it is essential to know the factors influencing the TW, and thereby compensate the TW to achieve dimensional stability of the machined features. The critical factors affecting the wear phenomenon of a tool and various techniques applied to compensate TW in µED-milling along with future trends of their application are presented. The key issues of µED-milling and challenges faced in implementing a TW compensation technique are highlighted. The concept of intentional wear of tool electrode and associated advantages in EDM is also demonstrated.  相似文献   

6.
The Electrical Discharge Machining (EDM) technique was performed under the magnetic field influence to determine the material removal mechanism as well as surface roughness (SR) of nonmagnetic material. This study presents an exploration of the hybrid EDM technique assisted by magnetic field, with an aim to improve process performance. Herein, magnetic field intensity, peak current, duration of pulse-on/off, tool electrode material, and SiC percentage distribution were opted as the machining parameters. The chosen parameters were analyzed for their effects on the material removal rate (MRR) and SR while machining of SiC-reinforced aluminum-based metal matrix composites. Taguchi methodology was adopted for optimization of process parameters to achieve better MRR and lower SR. The experimental results witnessed improved surface finish and enhanced material removal ability of the process and also inferred that the magnetic field-assisted EDM facilitated the process stability.  相似文献   

7.
The most common dielectric in sinking electrical discharge machining (EDM) is kerosene. However, kerosene is inflammable; besides, it can be decomposed and release harmful gases during machining process. And, owing to its low viscosity, using kerosene in sinking EDM has low machining efficiency. Accordingly, conventional sinking EDM using kerosene as dielectric has poor safety, unfriendly environment impact, and low machining efficiency. A new water-in-oil (W/O) nanoemulsion is presented in this paper. This W/O nanoemulsion not only can eliminate the hazards from kerosene to operator and environment but also improve the machining performance of conventional sinking EDM. This research aims to experimentally investigate the machining performance of W/O nanoemulsion in comparison with kerosene in sinking EDM at relatively low discharge energy. The effects of electrode material, electrode polarity, peak current, and pulse duration on machining performance are studied. The machined surface and recast layer of workpiece are characterized as well. The experimental results demonstrate that compared with kerosene, using W/O nanoemulsion in sinking EDM can obtain a higher material removal rate (MRR), a lower relative electrode wear rate (REWR), and a machined workpiece with fewer defects and thinner recast layer.  相似文献   

8.
EDM electrode manufacture using rapid tooling: a review   总被引:1,自引:0,他引:1  
Electrical discharge machining (EDM) is a non-conventional process for the manufacture of complex or hard material parts that are difficult to machine by conventional machining processes. During EDM, the electrode shape is mirrored in the workpiece. As a result, problems are transferred on the electrode manufacturing process. Rapid tooling (RT) is a new technology which uses rapid prototyping (RP) models to reduce the time and cost of tool manufacture. The various methods of manufacturing RT electrodes, with respect to different materials and the incorporated supplementary processes, are classified in the present work. Recent international research work on RT electrodes is reviewed and the results on the performance of RT electrodes are tabulated.  相似文献   

9.
Ultrasonic vibration assisted EDM was performed by using an ultrasonic machine tool with a d.c. power supply, with its positive and negative poles connected to the workpiece and the tool electrode, respectively. The pulse discharge is produced by the relative motion between the tool electrode and the workpiece. In the working process of this combined technology, ultrasonic machining and EDM are complementary techniques. Experimental results show that the material removal rate is a little more than just the sum of ultrasonic machining and EDM, while surface roughness is about the same as that for ultrasonic machining.  相似文献   

10.
This paper investigates the highly nonlinear relationship between process parameters and machining responses, including material removal rate (MRR), surface roughness (SR), and electrode wear rate (EWR) of electric discharge machining (EDM) using Kriging model. Subsequently, an emerging multi-objective optimization algorithm called particle swarm is used to determine the best machining conditions that not only maximize the machining speed but also minimize the EWR with a constraint of the SR. The experiment was carried out with P20 steel on a CNC EDM machine using copper electrode. The research result shows that the MRR increases sharply when increasing the discharge current just like other researches pointed out. However, the relationship between EWR and current is complicated. EWR appears the minimum value when the current is around 30?A. The speed of change of MRR per unit of EWR is the highest when the SR is around 14.5?µm. The combination of Kriging regression model and particle swarm optimization is considered as an intelligent process modeling and optimization of EDM machining. The proper selection of process parameters helps the EDM operator to reduce the machining time and cost.  相似文献   

11.
A functionally Graded 15-35 volume% silicon carbide particulate (SiCp) reinforced Al359 metal matrix composite (SiCp/Al MMC) was drilled by electrical discharge machining (EDM) to assess the machinability and workpiece quality. The machining conditions were identified for both the machining performance and workpiece quality of the EDM process, including some aspects of material removal mechanisms, material removal rate (MRR), electrode tool wear, and subsequent drilled hole quality including surface texture and roundness by using surface profilometry, coordinate measuring machine (CMM), and scanning electron microscopy (SEM). It was observed that the material removal rate increases with increasing peak current and pulse-on-time up to the optimal points and drops drastically thereafter. Higher peak current and/or pulse-on-time result in both the greater tool wear and the larger average diameter error. As the percentage of the SiC particles increases, MRR was increased and electrode wear was found to be decreased. At the EDM machined subsurface layer, the fragmented and melted SiC particles were observed under the SEM and EDX-ray examination.  相似文献   

12.
Electrical discharge machining (EDM) is one of the most accepted machining processes in the precision manufacturing industry. In EDM process, finding an alternative tool material is the demand in modern manufacturing industry. Therefore, an attempt had been made to fabricate copper–titanium diboride powder metallurgy electrode to test in EDM on monel 400? material. The experiments are planned using center composite second-order rotatable design and the model is developed by response surface methodology. The machining characteristics have analyzed using the developed model. In this study, four input parameters such as titanium diboride percentage, pulse current, pulse on time, and flushing pressure are selected to evaluate the material removal rate (MRR) and tool wear rate (TWR). The adequacy of the developed regression model has tested through analysis of variance test. The desirability-based multiobjective optimization is used to find the optimal process parameter which has given maximum MRR and minimum TWR. The optimum process parameters obtained were titanium diboride of 16%, pulse current of 6 A, flushing pressure of 1 Mpa, and pulse on time of 35?µs. The validity of the response surface model is further verified by conducting confirmation experiments.  相似文献   

13.
Among the various types of metal matrix composites, SiC particle-reinforced aluminum matrix composites (SiCp/Al) are finding increasing applications in many industrial fields such as aerospace, automotive, and electronics. However, SiCp/Al composites are considered as difficult-to-cut materials due to the hard ceramic reinforcement, which causes severe machinability degradation by increasing cutting tool wear, cutting force, etc. To improve the machinability of SiCp/Al composites, many techniques including conventional and nonconventional machining processes have been employed. The purpose of this study is to evaluate the machining performance of SiC p/Al composites using conventional machining, i.e., turning, milling, drilling, and grinding, and using nonconventional machining, namely electrical discharge machining (EDM), powder mixed EDM, wire EDM, electrochemical machining, and newly developed high-efficiency machining technologies, e.g., blasting erosion arc machining. This research not only presents an overview of the machining aspects of SiCp/Al composites using various processing technologies but also establishes optimization parameters as reference of industry applications.The full text can be downloaded at https://link.springer.com/article/10.1007/s40436-020-00313-2  相似文献   

14.
Electrical discharge machining (EDM) process is popular for machining conductive and difficult-to-cut materials, but low material removal rate (MRR) and poor surface quality are major limitations of the process. These limitations can be overcome by adding the suitable powder in the dielectric. The powder particles influence electric field intensity during the EDM process which in turn improve its performance. The size (micro to nano) and properties of the mixed powder also influence the machining efficiency. In this regard, the objective of the present work is to study the performance of EDM process for machining Inconel 825 alloy by mixing Al2O3 nanopowder in deionized water. The experimental investigation revealed that maximum MRR of 47?mg/min and minimum SR of 1.487?µm, which are 44 and 51% higher in comparison to conventional EDM process, respectively, can be achieved by setting optimal combinations of process parameters. To analyze these observed process behavior, pulse-train data of the spark gap were acquired. The discharge waveform identifies the less arcing phenomenon in the modified EDM process compared to conventional EDM. Further, surface-topography of the machined surface was critically examined by capturing field emission scanning electron microscopy and atomic force microscopy images.  相似文献   

15.
This paper discusses methods for the computerized selection of machining variables to increase productivity and optimize economics of machining. An attempt has been made to use the computer for process planning in situations for which the relationships between the machining variables and the performance measures are complex and nonlinear functions with discrete values. An algorithm is presented which deals directly with the problem of a discrete data base. A comparison of continuous and discrete data base methods for process planning was made using the Electro Discharge Machining (EDM) process.  相似文献   

16.
Compound machining (CM) compounded by arc machining and electrical discharge machining (EDM) milling is a new and fast processing method used to machine so-called “difficult-to-machine” materials. This method has an exciting maximum material removal rate that reaches 11,218 mm3/min with the relative electrode wear rate (REWR) of 1.54% when machining Inconel718. The electrode material is an important factor that affects the processing cost and quality of CM. Traditionally used electrode materials in arc machining and EDM, including pure tungsten (W), cerium tungsten (WCe20), copper (Cu), tungsten copper alloy (W80), and graphite (C), were used as electrode materials to process Inconel718. Experimental results show that tubular C is the best electrode material for CM. When tubular C is unavailable, WCe20 is the suitable electrode material for rough machining and W is a better choice in finish machining. Cu electrode is unsuitable for CM because of its low melting point. Results of this work provide guidance for selecting electrode materials for the industry application of efficient CM.  相似文献   

17.
This paper introduces selective modification of surface by electric discharge machining process and its parametric optimization. A hard layer of tungsten and copper mixture is created at selected area of aluminum surface. The process is done using W–Cu powder metallurgical green compact tool and masking technique in die-sinking electric discharge machining (EDM). The modified surface is evaluated by the performance measures such as tool wear rate, material transfer rate, surface roughness, and edge deviation from the pre-defined boundary line of deposited layer by analysis of variance using Taguchi design of experiment. Minimum surface roughness of 4.5 µm and minimum edge deviation of 37.29 µm is achieved. The hardness of the surface layer is increased more than three times of base metal. Overall effects of parameters are also analyzed considering multiple performance criteria using overall evaluation criteria. The modified surface is characterized using scanning electron microscopy and energy dispersive spectroscopy analysis, which show the tool material transfer at the selected area of the surface.  相似文献   

18.
The objective of this research is to investigate the feasibility of using Electrical-Discharge Machining (EDM) for carbon-carbon composite materials as well as the effects of major machining parameters. The material was machined by electrical-discharge sinker using copper electrode. The mechanism of material removal has been revealed by the morphology of debris. The material removal rate, the surface topography and the recast layer that remains on the workpiece surface were studied in terms of EDM processing variables (e.g., pulse current and pulse duration time). The machined surface showing resolidification was examined by Scanning Electron Microscopy (SEM). A qualitative energy dispersive spectroscopic analyzer was used to measure the amount of migrated alloy in the workpiece and the chemical composition of recast layer. The machining damage, the recast layer, and the mass transfer was proportional to the power input. The EDM process is a feasible method for machining of carbon-carbon composites.  相似文献   

19.
In this work we investigated the electrical discharge machining (EDM) of a Fe-Mn-Al alloy. The surface phenomena caused by EDM were studied in terms of machining parameters. An empirical model of the Fe-Mn-Al alloy was also proposed based on the experimental data. Experimental results indicate that the higher the discharge energy, the faster the machining time. This treatment introduces machining damage in the resolidified surface layer and worsens the surface roughness. The optimum pulse-on duration on the basis of the electrode wear ratio for the copper electrode was about 200 μs. The increase of crater depth with the applied pulsed current and pulse-on duration appears minimal under a small input energy.  相似文献   

20.
Functionally graded aluminum matrix composites (FGAMCs) are new materials with excellent capabilities for design and development of complex engineering works. In this work, FGAMCs are machined using electrical discharge machining (EDM) with the process input parameters such as pulse current, pulse on time, and zone position in brake disk. Design of experiments is used for the experimental planning with full factorial method. The selected input process parameters are optimized using gray relational analysis to minimize the electrode wear ratio, overcut, power consumption, and surface roughness. The influential studies of input process parameters on the output responses are also conducted. The optimal EDM parameter setting for achieving better output parameters is pulse current at 5 A, pulse on time at 50?µs and 45?mm zone position distance in the brake disk. The pulse current (39.40%) contributed the maximum in minimizing the output responses. Further, the surface morphology is also analyzed on the material to observe the crater formation and the erosion mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号