共查询到18条相似文献,搜索用时 93 毫秒
1.
对于不确定性数据,传统判断项集是否频繁的方法并不能准确表达项集的频繁性,同样对于大型数据,频繁项集显得庞大和冗余。针对上述不足,在水平挖掘算法Apriori的基础上,提出一种基于不确定性数据的频繁闭项集挖掘算法UFCIM。利用置信度概率表达项集频繁的准确性,置信度越高,项集为频繁的准确性也越高,且由于频繁闭项集是频繁项集的一种无损压缩表示,因此利用压缩形式的频繁闭项集替代庞大的频繁项集。实验结果表明,该算法能够快速地挖掘出不确定性数据中的频繁闭项集,在减少项集冗余的同时保证项集的准确性和完整性。 相似文献
2.
3.
如何在海量不确定数据集中提高频繁模式挖掘性能是目前研究的热点.传统算法大多是以期望、概率或者权重等单一指标为数据项集支持度,在大数据背景下,同时考虑概率和权重支持度的算法难以兼顾其执行效率.为此,本文提出一种基于Spark的不确定数据集频繁模式挖掘算法(UWEFP),首先,为了同时兼顾数据项的概率和权重,计算一项集的最大概率权重值并进行剪枝;然后,为了减少对数据集的多次扫描,结合Spark框架的优点,设计了一种具有FP-tree特征的新颖的UWEFP-tree结构进行模式树的构建及挖掘;最后在Spark环境下,以UCI数据集进行实验验证.实验结果表明本文的方法在保证挖掘结果的同时,提高了效率. 相似文献
4.
序列模式挖掘就是在时序数据库中挖掘相对时间或其他模式出现频率高的模式.序列模式发现是最重要的数据挖掘任务之一,并有着广阔的应用前景.针对静态数据库,序列模式挖掘已经被深入的研究.近年来,出现了一种新的数据形式:数据流.针对基于数据流的序列模式挖掘的研究还不是十分深入.提出一个有效的基于数据流的挖掘频繁序列模式的算法SSPM,利用到2个数据结构(F-list和Tatree)来处理基于数据流的序列模式挖掘的复杂性问题.SSPM的优点是可以最大限度地降低负正例的产生,实验表明SSPM具有较高的准确率. 相似文献
5.
6.
频繁模式挖掘在数据挖掘领域已经有广泛的应用.然而,对于增量更新频繁模式挖掘研究得不是很多.本文提出了一种新颖的增量更新频繁模式树结构(IUNP_Tree),构建它只需要对数据库扫描一次.此外,提出了基于条件矩阵(conditional matrix)的频繁模式挖掘算法(FPBM_Mine)和增量更新算法INUPA,可以有效地处理数据库的增量更新问题.实验表明,该算法是有效的,并且运行效率高于FP-growth算法. 相似文献
7.
8.
在分析研究具有代表性的关联知识挖掘算法的基础上,提出了挖掘频繁模式的一个新的数据库存储结构AFP-树,并在此结构上设计了一个频繁模式挖掘算法。理论研究已经阐明了AFP-树的有效性和相关算法的高效性。 相似文献
9.
10.
在频繁模式挖掘过程中能够动态改变约束的算法比较少.提出了一种基于约束的频繁模式挖掘算法MCFP.MCFP首先按照约束的性质来建立频繁模式树,并且只需扫描一遍数据库,然后建立每个项的条件树,挖掘以该项为前缀的最大频繁模式,并用最大模式树来存储,最后根据最大模式来找出所有支持度明确的频繁模式.MCFP算法允许用户在挖掘频繁模式过程中动态地改变约束.实验表明,该算法与iCFP算法相比是很有效的. 相似文献
11.
挖掘滑动窗口中的数据流频繁模式 总被引:2,自引:0,他引:2
随着数据流应用的不断增多,数据流环境下的数据挖掘技术受到了越来越多的关注.文章结合数据流的特点,提出一种新的基于滑动窗口的频繁模式挖掘算法:DSFPM.算法分块挖掘数据流,在内存中维持一个用于保存所有潜在的频繁模式信息的存储结构DSFPM-Tree,并在各个基本窗口进入滑动窗口后动态更新该存储结构.算法仅处理和保存各个基本窗口的临界频繁闭合项集,极大地提高了时间和空间效率.实验结果表明,该算法具有良好的性能. 相似文献
12.
频繁模式挖掘是关联规则、序列分析等数据挖掘任务的关键步骤,我们知道,当给定的最小支持度阈值非常小,将产生大量的频繁模式,反之,可能产生很少的模式或根本没有结果。用户有时仅对其中的部分项的频繁度感兴趣,这属于部分频繁模式挖掘问题。文章通过有效设置挖掘区间,讨论一种top—k项频繁模式挖掘问题,进而扩展到连续区间上的情况,最后将给出实验结果。 相似文献
13.
频繁模式挖掘是最基本的数据挖掘问题,由于内在复杂性,提高挖掘算法性能一直是个难题.耶是通过数据库混合投影来挖掘频繁模式完全集的全新算法.HP混合投影思想是:任意数据集都不能简单地归入某个单一特性类别,挖掘过程应根据局部数据子集的特性变化动态地调整频繁模式树构造策略、事务子集表示形式、投影方法.HP提出基于树表示的虚拟投影与基于数组表示的非过滤投影,较好地解决了提高时间效率与节省内存空间的矛盾.实验表明,HP时间效率比Apriori,FP—Growth和H-Mine高出1~3个数量级,并且空间可伸缩性也大大优于这些算法. 相似文献
14.
Recently, with the growing popularity of Internet of Things (IoT) and pervasive computing, a large amount of uncertain data, e.g., RFID data, sensor data, real-time video data, has been collected. As o... 相似文献
15.
挖掘最大频繁模式的新方法 总被引:11,自引:0,他引:11
由于其内在的计算复杂性,挖掘密集型数据集的频繁模式完全集非常困难,解决方案之一是挖掘最大频繁模式集.该文在频繁模式完全集挖掘算法Opportune Project基础上,提出了挖掘最大频繁模式的新算法MOP.它采用宽度与深度优先相结合的混合搜索策略,能恰当地选择不同的支持集表示和投影方法,将闭合性剪裁和一般性剪裁相结合,并适时前窥,实现搜索与剪裁效率最优化.实验表明,MOP效率是MaxMiner的2~8倍,比MAFIA高2个数量级以上. 相似文献
16.
高效挖掘无序频繁子树 总被引:4,自引:0,他引:4
频繁模式挖掘是数据挖掘领域的中一个重要问题,其研究范围包括事务,序列,树和图.频繁子树挖掘广泛应用于生物信息学,web挖掘,化合物结构分析和挖掘等领域.本文提出用模式增长方法在由无序树构成的森林中挖掘直接频繁子树.算法利用规范化方法将元序树化为为唯一的表示形式,利用最右路径扩展方法构造完整的模式增长空间,然后根据待增长模式的拓扑结构确定其增长点并构造相应投影库,从而将挖掘频繁子树模式问题转化为在各投影库中寻找频繁节点问题.通过与HybridTreeMiner算法的实验比较,表明其具有更高的效率。 相似文献
17.
FP-growth算法是目前较高效的频繁模式挖掘算法之一,该算法不产生候选项集,但递归构造“条件FP-Tree”的CPU 开销和存储很大.为此提出了一种频繁模式挖掘算法IFPmine.首先,为了节省内存空间,采用了约束子树的挖掘方法;其次,采用了数组技术来减少树的遍历时间,从而提高算法的效率.实验结果表明,IFP算法是一种较有效的频繁模式挖掘算法,其挖掘效率优于STFP-树算法和FP-树算法,而需要的内存却少于STFP-树和FP-树算法. 相似文献
18.