首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 92 毫秒
1.
对于不确定性数据,传统判断项集是否频繁的方法并不能准确表达项集的频繁性,同样对于大型数据,频繁项集显得庞大和冗余。针对上述不足,在水平挖掘算法Apriori的基础上,提出一种基于不确定性数据的频繁闭项集挖掘算法UFCIM。利用置信度概率表达项集频繁的准确性,置信度越高,项集为频繁的准确性也越高,且由于频繁闭项集是频繁项集的一种无损压缩表示,因此利用压缩形式的频繁闭项集替代庞大的频繁项集。实验结果表明,该算法能够快速地挖掘出不确定性数据中的频繁闭项集,在减少项集冗余的同时保证项集的准确性和完整性。  相似文献   

2.
由于不确定性数据大量存在于传感器网络,移动计算,军事,电信等应用领域,传统的频繁项集挖掘算法难以适用到不确定性数据挖掘。为了解决这个问题,本文提出了一种快速有效的算法,该算法基于可能世界模型,只需要扫描一次数据库,且没有建树的过程,通过实验证明,我们提出的算法比UF_Growth算法效率更高。  相似文献   

3.
序列模式挖掘就是在时序数据库中挖掘相对时间或其他模式出现频率高的模式.序列模式发现是最重要的数据挖掘任务之一,并有着广阔的应用前景.针对静态数据库,序列模式挖掘已经被深入的研究.近年来,出现了一种新的数据形式:数据流.针对基于数据流的序列模式挖掘的研究还不是十分深入.提出一个有效的基于数据流的挖掘频繁序列模式的算法SSPM,利用到2个数据结构(F-list和Tatree)来处理基于数据流的序列模式挖掘的复杂性问题.SSPM的优点是可以最大限度地降低负正例的产生,实验表明SSPM具有较高的准确率.  相似文献   

4.
如何在海量不确定数据集中提高频繁模式挖掘性能是目前研究的热点.传统算法大多是以期望、概率或者权重等单一指标为数据项集支持度,在大数据背景下,同时考虑概率和权重支持度的算法难以兼顾其执行效率.为此,本文提出一种基于Spark的不确定数据集频繁模式挖掘算法(UWEFP),首先,为了同时兼顾数据项的概率和权重,计算一项集的最大概率权重值并进行剪枝;然后,为了减少对数据集的多次扫描,结合Spark框架的优点,设计了一种具有FP-tree特征的新颖的UWEFP-tree结构进行模式树的构建及挖掘;最后在Spark环境下,以UCI数据集进行实验验证.实验结果表明本文的方法在保证挖掘结果的同时,提高了效率.  相似文献   

5.
对频繁模式技术进行了综述,阐述了频繁模式产生的背景、定义和任务,介绍了国内外常用的频繁模式挖掘算法,并指出了频繁模式未来的研究方向。  相似文献   

6.
频繁模式挖掘在数据挖掘领域已经有广泛的应用.然而,对于增量更新频繁模式挖掘研究得不是很多.本文提出了一种新颖的增量更新频繁模式树结构(IUNP_Tree),构建它只需要对数据库扫描一次.此外,提出了基于条件矩阵(conditional matrix)的频繁模式挖掘算法(FPBM_Mine)和增量更新算法INUPA,可以有效地处理数据库的增量更新问题.实验表明,该算法是有效的,并且运行效率高于FP-growth算法.  相似文献   

7.
在分析研究具有代表性的关联知识挖掘算法的基础上,提出了挖掘频繁模式的一个新的数据库存储结构AFP-树,并在此结构上设计了一个频繁模式挖掘算法。理论研究已经阐明了AFP-树的有效性和相关算法的高效性。  相似文献   

8.
高昂  杨扬  王玥薇 《计算机科学》2009,36(9):231-233
为了提高工作流模型挖掘技术的准确性,提出了一种新的工作流频繁模式挖掘算法.首先,阐述了工作流模型依赖矩阵的定义,并利用工作流日志建立了依赖矩阵.然后采用活动间的依赖关系作为频繁项集,设计了一种基于依赖矩阵的频繁项集自动生成算法.最后对频繁项集进行处理,得到最终的工作流频繁模式.该算法能够处理活动间交叠关系和具有串、并行关系的工作流模型,因此更具优越性.  相似文献   

9.
在频繁模式挖掘过程中能够动态改变约束的算法比较少.提出了一种基于约束的频繁模式挖掘算法MCFP.MCFP首先按照约束的性质来建立频繁模式树,并且只需扫描一遍数据库,然后建立每个项的条件树,挖掘以该项为前缀的最大频繁模式,并用最大模式树来存储,最后根据最大模式来找出所有支持度明确的频繁模式.MCFP算法允许用户在挖掘频繁模式过程中动态地改变约束.实验表明,该算法与iCFP算法相比是很有效的.  相似文献   

10.
为提高不确定数据集上频繁模式挖掘的效率, 针对已有算法在判断是否需要为头表中的某项创建子头表时的计算量比较大的问题, 给出一个近似挖掘策略AAT-Mine, 以损失小部分频繁项集为代价, 提高整个算法的挖掘效率。采用三个不同的典型数据集进行了算法的测试, 分别与目前最好的算法和典型算法进行性能对比。实验结果验证了近似算法AAT-Mine的时空效率都得到了提高。  相似文献   

11.
基于概率衰减窗口模型的不确定数据流频繁模式挖掘   总被引:2,自引:0,他引:2  
考虑到不确定数据流的不确定性,设计了一种新的概率频繁模式树PFP-tree和基于该树的概率频繁模式挖掘方法PFP-growth.PFP-growth使用事务性不确定数据流及概率衰减窗口模型,通过计算各概率数据项的期望支持度以发现概率频繁模式,其主要特点有:考虑到窗口内不同时间到达数据项的贡献度不同,采用概率衰减窗口模型计算期望支持度,以提高模式挖掘准确度;设置数据项索引表和事务索引表,以加快频繁模式树检索速度;通过剪枝删除不可能成为频繁模式的结点,以降低模式树的存储及检索开销;对每个结点都设立一个事务概率信息链表,以支持数据项在不同事务中具有不同概率的情形.实验结果表明,PFP-growth在保证挖掘模式准确度的前提下,在处理时间和内存空间等方面都具有较好的性能.  相似文献   

12.
从不确定图中挖掘频繁子图模式   总被引:8,自引:0,他引:8  
邹兆年  李建中  高宏  张硕 《软件学报》2009,20(11):2965-2976
研究不确定图数据的挖掘,主要解决不确定图数据的频繁子图模式挖掘问题.介绍了一种数据模型来表示图的不确定性,以及一种期望支持度来评价子图模式的重要性.利用期望支持度的Apriori性质,给出了一种基于深度优先搜索策略的挖掘算法.该算法使用高效的期望支持度计算方法和搜索空间裁剪技术,使得计算子图模式的期望支持度所需的子图同构测试的数量从指数级降低到线性级.实验结果表明,该算法比简单的深度优先搜索算法快3~5个数量级,有很高的效率和可扩展性.  相似文献   

13.
从不确定数据集中挖掘频繁Co-location模式   总被引:2,自引:1,他引:1  
把挖掘频繁co-location模式的经典算法Join-based算法扩展到了UJoin-based算法,解决了从不确定数据集中挖掘频繁co-location模式的问题。针对UJoin-based算法中ED(expected distances)计算开销大的问题,介绍了两种剪枝技术:边界矩形剪枝技术和三角不等式剪枝技术,其中,在三角不等式剪枝部分,分别讨论了取1个锚点、5个锚点和9个锚点的不同情况。通过大量实验证明了剪枝策略有效避免了大量的ED计算,提高了算法的效率。  相似文献   

14.
挖掘数据流中的频繁模式   总被引:17,自引:1,他引:17  
发现数据流中的频繁项是数据流挖掘中最基本的问题之一.数据流的无限性和流动性使得传统的频繁模式挖掘算法难以适用.针对数据流的特点,在借鉴FP-growth算法的基础上,提出了一种数据流频繁模式挖掘的新方法:FP-DS算法.算法采用数据分段的思想,逐段挖掘频繁项集,用户可以连续在线获得当前的频繁项集,可以有效地挖掘所有的频繁项集,算法尤其适合长频繁项集的挖掘.通过引入误差ε,裁减了大量的非频繁项集,减少了数据的存储量,也能保证整个数据集中项目集支持度误差不超过ε. 分析和实验表明算法有较好的性能.  相似文献   

15.
挖掘滑动窗口中的数据流频繁模式   总被引:2,自引:0,他引:2  
随着数据流应用的不断增多,数据流环境下的数据挖掘技术受到了越来越多的关注.文章结合数据流的特点,提出一种新的基于滑动窗口的频繁模式挖掘算法:DSFPM.算法分块挖掘数据流,在内存中维持一个用于保存所有潜在的频繁模式信息的存储结构DSFPM-Tree,并在各个基本窗口进入滑动窗口后动态更新该存储结构.算法仅处理和保存各个基本窗口的临界频繁闭合项集,极大地提高了时间和空间效率.实验结果表明,该算法具有良好的性能.  相似文献   

16.
频繁模式挖掘是关联规则、序列分析等数据挖掘任务的关键步骤,我们知道,当给定的最小支持度阈值非常小,将产生大量的频繁模式,反之,可能产生很少的模式或根本没有结果。用户有时仅对其中的部分项的频繁度感兴趣,这属于部分频繁模式挖掘问题。文章通过有效设置挖掘区间,讨论一种top—k项频繁模式挖掘问题,进而扩展到连续区间上的情况,最后将给出实验结果。  相似文献   

17.
频繁模式挖掘是最基本的数据挖掘问题,由于内在复杂性,提高挖掘算法性能一直是个难题.耶是通过数据库混合投影来挖掘频繁模式完全集的全新算法.HP混合投影思想是:任意数据集都不能简单地归入某个单一特性类别,挖掘过程应根据局部数据子集的特性变化动态地调整频繁模式树构造策略、事务子集表示形式、投影方法.HP提出基于树表示的虚拟投影与基于数组表示的非过滤投影,较好地解决了提高时间效率与节省内存空间的矛盾.实验表明,HP时间效率比Apriori,FP—Growth和H-Mine高出1~3个数量级,并且空间可伸缩性也大大优于这些算法.  相似文献   

18.
Recently, with the growing popularity of Internet of Things (IoT) and pervasive computing, a large amount of uncertain data, e.g., RFID data, sensor data, real-time video data, has been collected. As o...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号