首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The active-site cleft of bovine pancreatic ribonuclease A (RNase A) is lined with cationic residues that interact with a bound nucleic acid. Those residues interacting with the phosphoryl groups comprise the P0, P1, and P2 subsites, with the scissile P-O5' bond residing in the P1 subsite. Coulombic interactions between the P0 and P2 subsites and phosphoryl groups of the substrate were characterized previously [Fisher, B. M., Ha, J.-H., and Raines, R. T. (1998) Biochemistry 37, 12121-12132]. Here, the interactions between these subsites and the active-site residues His12 and His119 are described in detail. A protein variant in which the cationic residues in these subsites (Lys66 in the P0 subsite and Lys7 and Arg10 in the P2 subsite) were replaced with alanine was crystallized, both free and with bound 3'-uridine monophosphate (3'-UMP). Structures of K7A/R10A/K66A RNase A and the K7A/R10A/K66A RNase A.3'-UMP complex were determined by X-ray diffraction analysis to resolutions of 2.0 and 2.1 A, respectively. There is little observable change between these structures and that of wild-type RNase A, either free or with bound 3'-cytidine monophosphate. K7A/R10A/K66A RNase A was evaluated for its ability to cleave UpA, a dinucleotide substrate that does not span the P0 or the P2 subsites. In comparison to the wild-type enzyme, the value of kcat was decreased by 5-fold and that of kcat/Km was decreased 10-fold, suggesting that these remote subsites interact with the active site. These interactions were characterized by determining the pKa values of His12 and His119 at 0.018 and 0.142 M Na+, both in wild-type RNase A and the K7A/R10A/K66A variant. The side chains of Lys7, Arg10, and Lys66 depress the pKa values of these histidine residues, and this depression is sensitive to the salt concentration. In addition, the P0 and P2 subsites influence the interaction of His12 and His119 with each other, as demonstrated by changes in the cooperativity that gives rise to microscopic pKa values. Finally, the affinity of 3'-UMP for wild-type RNase A and the K7A/R10A/K66A variant at 0.018 and 0.142 M Na+ was determined by isothermal titration calorimetry. 3'-UMP binds to the variant protein with 5-fold weaker affinity at 0.018 M Na+ and 3-fold weaker affinity at 0.142 M Na+ than it binds to wild-type RNase A. Together these data demonstrate that long-range Coulombic interactions are an important feature in catalysis by RNase A.  相似文献   

2.
This study reports on a patient with Leigh syndrome with a T-to-C mutation at nucleotide 8993 of mitochondrial deoxyribonucleic acid (T8993C). The authors reviewed 10 Leigh syndrome patients, including ours, with T8993C. Compared with 18 reported patients with Leigh syndrome caused by a T-to-G mutation at nucleotide 8993 (T8993G), Leigh syndrome with T8993C was characterized by a significantly higher frequency of ataxia (P < 0.01). None of the reviewed T8993C-associated Leigh syndrome patients had retinitis pigmentosa, which is one of the characteristic findings in Leigh syndrome with T8993G. The milder symptoms of T8993C-Leigh syndrome can be explained by the milder complex V dysfunction; however, the higher frequency of ataxia in T8993C-Leigh syndrome requires more study.  相似文献   

3.
In this multi-author issue several aspects of the ribonuclease A superfamily are reviewed. This superfamily can be subdivided in a number of mammalian and other vertebrate ribonuclease families. In the introduction chapter the titles of the other contributions are presented. There is little uniformity in the nomenclature of ribonucleases, caused in part by gene duplications, which have occurred independently in several mammalian lineages, and which are nice examples for explaining orthology and paralogy in molecular evolution.  相似文献   

4.
Dynamic light scattering and circular dichroism experiments were performed to determine the compactness and residual secondary structure of reduced and by 6 M guanidine hydrochloride denatured ribonuclease A. We find that reduction of the four disulphide bonds by dithiothreitol at 20 degrees C leads to total unfolding and that a temperature increase has no further effect on the dimension. The Stokes' radius of ribonuclease A at 20 degrees C is R(s) = (1.90 +/- 0.04) nm (native) and R(s) = (3.14 +/- 0.06) nm (reduced-denatured). Furthermore, circular dichroism spectra do not indicate any residual secondary structure. We suggest that reduced-denatured Ribonuclease A has a random coil-like conformation and is not in a compact denatured state.  相似文献   

5.
Two-dimensional NMR spectroscopy has been used to monitor the exchange of backbone amide protons in ribonuclease A (RNase A) and its subtilisin-cleaved form, ribonuclease S (RNase S). Exchange measurements at two different pH values (5.4 and 6.0) show that the exchange process occurs according to the conditions of the EX2 limit. Differential scanning calorimetry measurements have been carried out in 2H2O under conditions analogous to those used in the NMR experiments in order to determine the values of DeltaCp, DeltaHu and Tm, corresponding to the thermal denaturation of both proteins. For the amide protons of a large number of residues in RNase A, the free energies at 25 degreesC for exchange competent unfolding processes are much lower than the calorimetric denaturation free energies, thus showing that exchange occurs through local fluctuations in the native state. For 20 other protons, the cleavage reaction had approximately the same effect on the exchange rate constants than on the equilibrium constant for unfolding, indicating that those protons exchange by global unfolding. There is a good agreement between the residues to which these protons belong and those involved in the putative folding nucleation site identified by quench-flow NMR studies. The unfolding free energies of the slowest exchanging protons, DeltaGex, as evaluated from exchange data, are much larger than the calorimetric free energies of unfolding, DeltaGu. Given the agreement between DeltaDeltaGex(A-S), the difference in free energy from exchange for a given proton of the two proteins, and DeltaDeltaGu(A-S), the difference in the calorimetric free energy of the two proteins, the discrepancy indicates that the intrinsic exchange rates in the unfolded state of those protons cannot be approximated by those measured in short unstructured peptides and, consequently, exchange for those protons in RNase A and S must occur through a rather structured denatured state.  相似文献   

6.
The slow fluorescence unfolding phase of bovine pancreatic ribonuclease A is studied by stopped-flow kinetics and site-directed mutagenesis of tyrosines to phenylalanine and prolines to alanine. It is shown conclusively that this phase arises from two specific sources: Tyr92 reporting on the cis-trans isomerization of Pro93 and Tyr115 reporting on the cis-trans isomerization of Pro114. Previous studies have conjectured that the slow unfolding phase arises from only one source (Tyr92-Pro93 cis-trans isomerization) based primarily on studies of the homologous protein guinea pig ribonuclease A [Schmid, F. X., Grafl, R., Wrba, A., and Beintema, J. J. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 872-876]; it is proposed here that Lys113 in the latter protein interferes with the isomerization of the Lys113-Pro114 peptide group. The site-directed mutations studied here enable the individual isomerizations of Pro93 and Pro114 to be monitored, providing an optical technique by which these well-defined molecular folding events can be studied, under both folding and unfolding conditions, and compared to molecular simulations. The time constants for Pro93 and Pro114 isomerization agree closely with those of our box model of proline isomerization under unfolding conditions, which had been derived from exhaustive statistical modeling of double-jump refolding data [Juminaga, D., Wedemeyer, W. J., Gardu?o-Júarez, R., McDonald, M. A., and Scheraga, H. A. (1997) Biochemistry 36, 10131-10145].  相似文献   

7.
The involvement of lysine residues in the active site of pancreatic ribonuclease has been investigated by assessing (a) the degree of substrate and substrate analogue protection of individual lysine residues against acetylation, and (b) the individual contribution of remaining unacetylated lysine residues to the total catalytic activity of the enzyme. Different substrate analogues (RNA digest, CMP, ATP, and pyrophosphate) were found to give different degrees of protection against acetylation with acetic anhydride. Instead of the expected specific protection of active site lysine residues such as lysine-7 and lysine-41, however, a general decrease in reactivity of all the lysines was observed when the substrate analogues were present during the acetylation. The fraction of enzymatic activity remaining in the protected samples was consistently greater than the fraction of any one lysine remaining unacetylated, and was found to correspond fairly well with the sum of the fractions of unacetylated lysine-7, lysine-41, and a third residue, tentatively assigned as lysine-66. This is consistent with other observations of ribonuclease which suggest that while no lysine residue interacts with substrate and substrate analogues in the formation of the Michaelis-Menten complex, a lysine amino group is required for catalysis. It is proposed that this lysine amino group can be supplied by any one of two or three lysine residues (7, 41, and 66) located close to the substrate binding site.  相似文献   

8.
伴随着经济的持续性发展,目前科学技术也处于快速发展阶段,遥感和航空摄影测量属于测绘技术中的发展关键,同时在地形测绘方面的应用也具备较大的意义和价值。数字测绘技术已经基本替代了传统模拟测绘技术,并成为目前主要测绘技术形式。对此,为了有效提高遥感和航空摄影测量工作水平,本文简要分析遥感及航空摄影测量中的新技术,希望可以为相关从业者提供理论帮助。  相似文献   

9.
10.
Pancreatic ribonucleases from several species (whitetail deer, roe deer, guinea pig, and arabian camel) exhibit more than one amino acid at particular positions in their amino acid sequences. Since these enzymes were isolated from pooled pancreas, the origin of this heterogeneity is not clear. The pancreatic ribonucleases from 11 individual arabian camels (Camelus dromedarius) have been investigated with respect to the lysine-glutamine heterogeneity at position 103 (Welling et al., 1975). Six ribonucleases showed only one basic band and five showed two bands after polyacrylamide gel electrophoresis, suggesting a gene frequency of about 0.75 for the Lys gene and about 0.25 for the Gln gene. The amino acid sequence of bactrian camel (Camelus bactrianus) ribonuclease isolated from individual pancreatic tissue was determined and compared with that of arabian camel ribonuclease. The only difference was observed at position 103. In the ribonucleases from two unrelated bactrian camels, only glutamine was observed at that position.  相似文献   

11.
Exhaustive-substitution studies, where many amino acid replacements are individually tested at all positions in a natural protein, have proven to be very valuable in probing the relationship between sequence and function. The broad picture that has emerged from studies of this sort is one of functional tolerance of substitution. We have applied this approach to barnase, a 110-residue bacterial ribonuclease. Because the selection system used to score barnase mutants as active or inactive detects activity down to a level that can be approached by nonenzyme catalysts, mutants that test inactive are essentially devoid of enzymatic function. Of the 109 barnase positions subjected to substitution, only 15 (14%) are vulnerable to this extreme level of inactivation, and only 2 could not be substituted without such inactivation. A total of 33 substitutions (amounting to 5% of the explored substitutions) were found to render barnase wholly inactive. The profoundly disruptive effects of all of these inactivating substitutions appear to result from either (1) replacement of a side chain that is directly involved in substrate binding or catalysis, (2) replacement of a substantially buried side chain, (3) introduction of a proline residue, or (4) replacement of a glycine residue. Although substitutions of these types are functionally tolerated more often than not, the system used here indicates that only these sorts of substitution are capable of single-handedly reducing catalytic function to, or nearly to, levels that can be achieved by nonenzyme catalysts.  相似文献   

12.
Fifty-one previously untreated cases of lung carcinoma and 7 normal healthy controls were evaluated with respect to serum ribonuclease (S-RNase) levels. Cellular immunity was tested in 22 of these 51 cases by leukocyte migration inhibition test (MIT) using extract of culture cell line of lung carcinoma. S-RNase levels in lung carcinomas were significantly elevated. There appeared to be no difference in S-RNase levels by histological classification. More striking was high S-RNase level in disseminated versus localized cases. MIT results indicated impairment of cellular immunity in those cases of more elevated S-RNase. S-RNase may be implicated in blocking phenomenon associated with neoplastic disease.  相似文献   

13.
Fourier transform-infrared (FTIR) spectroscopy has been used to test for the presence of nonrandom structure in thermally denatured ribonuclease A (RNase A) at pH* 2.0 (uncorrected pH measured in D2O). The amide I spectral region of the native and thermally denatured protein was compared. A substantial decrease in the amount of beta-sheet and alpha-helix and a corresponding increase in the amount of turn and unordered structure was observed on thermal denaturation. The results indicate that thermally denatured RNase A contains significant amounts of secondary structure (11% helix and 17% beta-sheet), consistent with previous results reported for circular dichroism, and with a relatively compact structure, as revealed by dynamic light scattering. These results are in contrast to those of amide protection experiments reported recently [Robertson, A.D., & Baldwin, R.L. (1991) Biochemistry 30, 9907-9914] which indicated no stable hydrogen-bonded structure under these experimental conditions. Possible explanations for this apparent discrepancy are given.  相似文献   

14.
Selective deamidation of proteins and peptides is a reaction of great interest, both because it has a physiological role and because it can cause alteration in the biological activity, local folding, and overall stability of the protein. In order to evaluate the thermodynamic effects of this reaction in proteins, we investigated the temperature-induced denaturation of ribonuclease A derivatives in which asparagine 67 was selectively replaced by an aspartyl residue or an isoaspartyl residue, as a consequence of an in vitro deamidation reaction. Differential scanning calorimetry measurements were performed in the pH range 3.0-6.0, where the unfolding process is reversible, according to the reheating criterion used. It resulted that the monodeamidated forms have a different thermal stability with respect to the parent enzyme. In particular, the replacement of asparagine 67 with an isoaspartyl residue leads to a decrease of 6.3 degrees C of denaturation temperature and 65 kJ mol-1 of denaturation enthalpy at pH 5.0. These results are discussed and correlated to the X-ray three-dimensional structure of this derivative. The analysis leads to the conclusion that the difference in thermal stability between RNase A and (N67isoD)RNase A is due to enthalpic effects arising from the loss of two important hydrogen bonds in the loop containing residue 67, partially counterbalanced by entropic effects. Finally, the influence of cytidine-2'-monophosphate on the stability of the three ribonucleases at pH 5.0 is studied and explained in terms of its binding on the active site of ribonucleases. The analysis makes it possible to estimate the apparent binding constant and binding enthalpy for the three proteins.  相似文献   

15.
A 45-year-old man was referred to our hospital for recurrent desmoid tumor of the chest wall. He underwent chest wall resection with reconstruction of Marlex mesh. But we could not resect it enough widely, because the tumor invaded beside left subclavian artery and subclavian vein, brachioflexus. So he had additional radiation therapy (50 gry). The patient is now doing well without recurrence 1 year after the operation.  相似文献   

16.
A method was evaluated to control for off-resonance saturation in noninvasive magnetic resonance imaging with continuous arterial spin labeling of cerebral blood flow. In phantoms and humans, application of amplitude-modulated radio-frequency irradiation during the control image corrected for saturation across the whole brain and made possible cerebral blood flow imaging in multiple sections at arbitrary angles to the labeling plane.  相似文献   

17.
18.
19.
To enable application of postgenomic evolutionary approaches to understand the divergence of behavior and function in ribonucleases (RNases), the impact of divergent sequence on the divergence of tertiary and quaternary structure is analyzed in bovine pancreatic and seminal ribonucleases, which differ by 23 amino acids. In a crystal, seminal RNase is a homodimer joined by two "antiparallel" intersubunit disulfide bonds between Cys-31 from one subunit and Cys-32' from the other and having composite active sites arising from the "swap" of residues 1-20 from each subunit. Specialized Edman degradation techniques have completed the structural characterization of the dimer in solution, new cross-linking methods have been developed to assess the swap, and sequence determinants of quaternary structure have been explored by protein engineering using the reconstructed evolutionary history of the protein family as a guide. A single Cys at either position 32 (the first to be introduced during the divergent evolution of the family) or 31 converts monomeric RNase A into a dimer. Even with an additional Phe at position 31, another residue introduced early in the seminal lineage, swap is minimal. A hydrophobic contact formed by Leu-28, however, also introduced early in the seminal lineage, increases the amount of "antiparallel" connectivity of the two subunits and facilitates swapping of residues 1-20. Efficient swapping requires addition of a Pro at position 19, a residue also introduced early in the divergent evolution of the seminal RNase gene. Additional cysteines required for dimer formation are found to slow refolding of the protein through formation of incorrect disulfide bonds, suggesting a paradox in the biosynthesis of the protein. Further studies showed that the dimeric form of seminal RNase known in the crystal is not the only form in vivo, where a substantial amount of heterodimer is known. These data complete the acquisition of the background needed to understand the evolution of new structure, behavior, and function in the seminal RNase family of proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号