共查询到19条相似文献,搜索用时 265 毫秒
1.
在人们常用到的模糊神经学习算法中很少讨论如何设置并调整初始的权值参数,这样就会影响模糊神经学习算法的准确度,使得目标函数值很大。虽然在改进的模糊神经学习算法中使用模糊C均值聚类方法来确定模糊规则的初始参数,但是这种方法必须已知模式集的数目,这就限制了模糊神经网络的应用范围。因此,将模糊超球神经网络的思想与模糊神经网络有机的结合起来,通过不断调整超球的中心和半径以及超球的数目,优化模式集的边界,来确定权值参数,利用这种方法确定初始参数可以减小误差,提高算法的准确度,使目标函数值减小。 相似文献
2.
3.
为提高支持向量机的模式分类性能,综合模糊支持向量机和球形支持向量机等方法,提出一种模糊最小包含球(FMEB)支持向量机,对于模式分类问题,通过引入模糊隶属度,寻找2个分别包含二类模式的同心最小包含球,使类间间隔最大化,同时二类模式类内分布最小化,从而增强泛化性和鲁棒性。实验结果证明FMEB的模式分类性能优于其他方法。 相似文献
4.
提出了一种用于发动机故障检测与诊断的概率超球集神经网络.神经网络用概率集表示发动机故障模式,概率集是由超球聚集形成的集合体,超球是由球心和半径确定.概率超球集神经网络能在两次循环中完成学习过程,并能不断融合新样本信息和精炼已存在的故障模式.YF-20发动机故障检测与诊断的仿真研究验证了概率超球集神经网络分类器的优越性能. 相似文献
5.
针对当前异常检测方法面临的分类性能有限以及分类结果易受噪声影响等问题,在分析当前异常检测方法的基础上,提出模糊大间隔最小超球模型FMHM。该模型引入模糊理论,在一定程度上减少噪声对分类结果的影响;正常样本与奇异样本之间的间隔最大化确保错分率最小。标准UCI数据集上的比较实验表明,较之单类支持向量机OCSVM、支持向量数据描述SVDD、K近邻KNN等算法,本文所提方法FMHM在异常检测方面具有一定优势。 相似文献
6.
模糊图像的超分辨率重建具有挑战性并且有重要的实用价值. 为此, 提出一种基于模糊核估计的图像盲超分辨率神经网络(Blurred image blind super-resolution network via kernel estimation, BESRNet). 该网络主要包括两个部分: 模糊核估计网络 (Blur kernel estimation network, BKENet)和模糊核自适应的图像重建网络(Kernel adaptive super-resolution network, SRNet). 给定任意低分辨率图像(Low-resolution image, LR), 首先利用模糊核估计子网络从输入图像估计出实际的模糊核, 然后根据估计到的模糊核, 利用模糊核自适应的图像重建子网络完成输入图像的超分辨率重建. 与其他图像盲超分辨率方法不同, 所提出的模糊核估计网络能够显式地从输入低分辨率图像中估计出完整的模糊核, 然后模糊核自适应的图像重建网络根据估计到的模糊核, 动态地调整网络各层的图像特征, 从而适应不同输入图像的模糊. 在多个基准数据集上进行了有效性实验, 定性和定量的结果都表明该网络优于同类的图像盲超分辨率神经网络. 相似文献
7.
提出一种与TSK模糊模型相似的模糊模型—M-2模型,证明了M-2模型与一个4层前向神经网络是等价的,在此基础上提出基于BP神经网络的模糊模型参数辨别算法,即通过BP神经网络对样本数据的学习,直接从样本数据获取模型参数,建立M-2模糊模型,通过仿真实例验证了该算法的有效性。 相似文献
8.
提出了一种具有自适应类警戒参数的模糊ARTMAP神经网络,为不同的模糊ART的类族设置了不同的警戒测试参数,并在学习过程中进行适应调整。还提出了新的非交叠超方形以及非交叠的Nested超主形的建立与扩展学习规则。 相似文献
9.
为解决传统支持向量机易出现学习“过拟合”和丢失数据统计特征等问题,通过引入模糊隶属度和总间隔思想,提出一种基于总间隔的最大间隔最小包含模糊球形学习机(TMF-SSLM),使得一类(正类)被包含于一个最小包含超球内,而另一类(负类)与该超球间隔最大化,从而同时实现类间间隔的增大和正负两类类内体积的缩小。通过使用差异成本,解决不平衡训练样本问题。引入总间隔和模糊性惩罚,克服传统软间隔分类机的过拟合问题,显著提升球形学习机的泛化能力。采用UCI实际数据集分别对二类和一类模式分类进行实验,结果显示TMF-SSLM具有优于相关方法的稳定分类性能。 相似文献
10.
基于模糊RBF神经网络的函数逼近 总被引:3,自引:1,他引:3
提出了一种模糊RBF网络,将模糊逻辑的知识表达以及推理能力和RBF网络的快速学习和泛化能力结合起来,网络结构参数可按实际问题调整,仿真表明网络具有较快的学习速度和较高的函数逼近精度。 相似文献
11.
球磨机出力检测和控制是球磨机自动控制的重要内容,然而,目前在实际生产过程中,球磨机出力缺少有效可靠的检测手段,因此很难实现优化控制.结合基于神经网络的软测量和混沌信息处理技术两者的优点,建立球磨机出力软测量模型.该模型不仅能预估稳态下球磨机出力,且对动态过程中球磨机出力的在线估计也切实有效,从而为球磨机的出力监测、给煤... 相似文献
12.
球磨机制粉系统是一个复杂的多变量系统,具有强耦合、非线性、大迟延、慢时变等特点,很难建立精确的数学模型,采用常规的控制策略难以获得满意的控制效果。针对上述问题,在对球磨机制粉系统动态特性进行分析的基础上,提出了一种不依赖于被控对象数学模型的多变量PID神经网络解耦控制策略;为进一步提高控制器性能,利用一种改进的PSO算法对PID神经网络的权值初值进行离线优化训练,然后采用BP算法对权值进行在线调整,避免网络陷入局部极小值,保证了系统不会出现大的超调和震荡。仿真结果表明,该策略可以保证球磨机控制系统有大范围的鲁棒性和适应性,能较好地解决球磨机制粉系统的耦合性、时变性等问题,具有优良的解耦机制和控制品质。 相似文献
13.
传统支持向量机的时间空间复杂度和样本个数有关,样本个数大时,将产生时间空间上的巨大耗费。文章通过对一类问题最小包围球研究分析的基础上提出了一种简化算法,该算法对每一类别样本单独构造一个近似最小超球,不仅降低了二次规划问题的复杂度,而且易于扩充。仿真实验表明,该算法在不降低识别率的情况下,减少了支持向量的个数,降低了算法的复杂度。 相似文献
14.
支持向量机是以统计学习理论为基础发展起来的新的通用学习方法,较好地解决了小样本、高维数、非线性等学习问题.本文提出了一种基于多级支持向量机分类器的滚动轴承工作状态识别方法.该方法通过时域特征参数对原信号进行特征提取,不仅计算简单,而且不考虑滚动轴承的型号和转速.试验表明这种方法具有很好的分类能力. 相似文献
15.
16.
板球系统是一个典型的多变量、非线性控制对象,本文针对该系统的基本位置控制和轨迹控制问题,采用基于视觉的控制方案,并在实物板球控制系统做了实时控制,达到了误差1mm以内的控制效果. 相似文献
17.
按照球磨机制粉过程运动特性的基本因果关系,建立一种球磨机制粉过程的结构分散化模型,它由6个单元模型、3条因果链和4支链间关联的模型构成.以该模型为基础,设计球磨机制粉过程的预估系统,它拥有单元预估系统、基本关联模型和依托因果链的预估信息传递模型,保证在子系统设计预估算法,仍然能够获得对整体系统运动特性的满意预估.设计球磨机制粉过程的控制系统,它包含单元控制系统和依托因果链的控制指令传递模型,保证在子系统设计控制算法,仍然能够获得对整体系统的期望控制性能.该新型控制系统应用于球磨机制粉过程控制,具有良好的稳定性、抗干扰和容错能力. 相似文献
18.
如何根据用户的性能要求来进行系统设计、确定信息系统总体性能参数并保证系统动态性能需求是信息系统建设过程中必须解决的问题,而在传统的信息系统开发方法中并没有提供有效的定量化方法来解决这个问题。该文针对这个问题,提出了在对信息系统进行建模仿真的基础上利用BP网络来确定信息系统总体性能参数的方法,利用BP所固有的对非线性映射逼近的特点以一种定量化的方法来确定系统总体性能参数。同时,对BP网络的输入输出参数进行了讨论和定义,并通过一个实例证明了该方法的实用性。 相似文献