首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
DSC-FTIR联用研究HTPB/AP和HTPB/AP/Al体系的热分解   总被引:3,自引:2,他引:3  
采用高压差示扫描量热(PDSC)、热重(TG-DTG)以及热红联用(DSC-FTIR)技术研究了HTPB/AP复合体系热分解及压力和铝粉对该体系的影响。结果表明,端羟基聚丁二烯(HTPB)包覆去活作用推迟了AP的热分解过程,但AP加速了HTPB的分解。增大压力和加入铝粉均能加速HTPB/AP复合体系的热分解过程,燃速也因此而提高。同时增大压力也使HTPB分解放热产生多峰现象,而铝粉会抑制该现象。此外,AP还使HTPB发生“后固化”过程,随着压力的增大,该过程的固化热也增大。  相似文献   

2.
镁基储氢材料对AP/Al/HTPB复合固体推进剂性能的影响   总被引:1,自引:1,他引:1  
用差示扫描量热仪(DSC)研究了镁基储氢材料(Mg2NiH4,Mg2Cu—H和MgH2)对高氯酸铵(AP)及AP/Al/HTPB复合固体推进剂热分解性能的影响。结果表明,含量5%的镁基储氢材料对AP热分解过程具有明显的催化促进作用。含量1.3%的镁基储氢材料可以降低AP/Al/HTPB复合固体推进剂热分解过程的热分解温度,使分解热明显增加,表现出显著的增强促进作用。燃速测定结果表明,在8MPa下,含量1.3%的Mg2 NiH4,Mg2Cu—H和MgH2可以分别使AP/Al/HTPB复合固体推进剂的燃速提高3.5%、14.4%和13.9%。镁基储氢材料对AP和AP/Al/HTPB复合固体推进剂热分解的作用效果与其含氢量有关,MgH2的含氢量大,作用效果好。镁基储氢材料主要通过催化AP/Al/HTPB复合固体推进剂中AP的热分解,表现出对AP/Al/HTPB复合固体推进剂热分解具有较好的催化效果。  相似文献   

3.
纳米金属粉对AP及AP/HTPB推进剂热分解的催化性能研究   总被引:1,自引:1,他引:0  
李凤生  刘磊力 《含能材料》2004,12(Z1):253-256
用热分析法研究了纳米金属粉(Ni、Cu和Al)对高氯酸铵(AP)以及AP/HTPB推进剂热分解的催化性能.结果表明,质量分数为5%的纳米镍粉、铜粉和铝粉可以明显降低AP的高温分解温度,显示出对AP高温分解反应很好的催化活性;纳米铜粉对AP的低温分解也有很好的催化作用,而纳米镍粉和铝粉却表现出对AP低温分解反应具有一定的阻碍作用.微米级金属粉对AP高温分解反应的催化作用明显小于纳米金属粉.纳米金属粉对AP/HTPB推进剂的热分解同样具有一定的催化效果.  相似文献   

4.
非等温DSC研究AI/HTPB/TDI体系的固化反应动力学   总被引:1,自引:0,他引:1       下载免费PDF全文
采用非等温差示扫描量热法(DSC)研究了铝粉对端羟基聚丁二烯/甲苯二异氰酸酯体系(HTPB/TDI)固化反应动力学的影响。结果表明,HTPB/TDI体系的固化反应表观活化能约为51.826kJ·mol^-1,反应级数为0.926,指前因子为2.412X10’min^-1;加入铝粉后,体系的固化峰温降低,表观活化能、反应级数和指前因子分别提高至76.402kJ·mol^-1、0.944、2.53×10^8min^-1,机理函数仍遵循Avrami—Erofeev方程G(α)=[-In(1-α)]^n,只是方程中的指数n有所变化。铝粉对HTPB/TDI固化反应的影响表现为在反应程度18%前起加速作用,18%后起延缓作用。浅析了铝粉影响HTPB/TDI体系固化的原因。  相似文献   

5.
纳米Cu/CNTs对AP/HTPB推进剂热分解与燃烧的催化研究   总被引:2,自引:0,他引:2  
刘永  姜炜  刘建勋  王毅  刘冠鹏  李凤生 《兵工学报》2008,29(9):1029-1033
以碳纳米管为载体,采用液相还原沉积法制备了纳米Cu/CNTs复合催化剂,并用SEM、XRD和XPS对其结构和成分进行了表征。研究了纳米Cu/CNTs对AP/HTPB推进剂热分解和燃烧过程的催化作用,结果表明:纳米Cu/CNTs能显著降低AP] HTPB推进剂的热分解峰温,并使总表观分解热明显增大,且对AP/HTPB推进剂燃烧有良好的催化效果,能显著提高推进剂的燃速,降低压强指数。初步探讨了纳米Cu/CNTs催化AP] HTPB推进剂热分解和燃烧过程的作用机理。  相似文献   

6.
金属铝粉具有活性高、耗氧量低、燃烧焓高和密度大等优良性能,广泛应用于提高火炸药和固体推进剂能量特性的研究中.过渡金属Cu对铝粉的燃烧具有良好的催化作用,可以使铝粉燃烧更充分.端羟基聚丁二烯(HTPB)作为固体推进剂黏合剂组分,均匀地包覆在铝基复合粒子表面,可有效地阻止表面氧化和团聚,且有利于药柱压装固化成型.以乙酰丙酮铜为铜源,甲醛和肼为还原剂,采用一锅法液相还原制备HTPB/Cu/μAl复合粒子.通过IR、XRD、SEM和EDS对样品的结构和形貌进行表征,同时研究了HTPB/Cu/μAl对AP热分解的催化行为.结果表明,还原出来的Cu以粒子形式散落在铝粉表面,HTPB则均匀包覆在Cu/μAl的表面.HTPB/Cu/μAl的DSC曲线在150~350℃范围内同时出现过渡金属Cu的氧化放热峰和HTPB的分解放热峰,但包覆对微米铝粉在550℃的氧化放热峰基本没有影响.HTPB/Cu/μAl的平均活化能为287.2 kJ·mol-1,相比于μAl平均活化能(323.55 kJ·mol-1)降低了36.35 kJ·mol-1.加入HTPB/Cu/μAl复合材料后,AP的高温和低温分解峰均发生变化,其中高温热分解温度较纯AP降低了127℃,表明HTPB/Cu/μAl复合材料可促进AP的热分解行为.  相似文献   

7.
为了解决Al粉点火困难、燃烧团聚的问题,进行了铝粉合金化与氧化剂包覆改性研究。利用声共振混合技术制备了AP@Al/Ni复合燃料,采用氧弹量热仪测试不同高氯酸铵(AP)含量下复合燃料的反应热;采用扫描电镜分析了优选复合燃料的形貌特征;通过同步热分析仪对比研究了AP、Al/AP混合物、Ni/AP混合物及AP@Al/Ni复合燃料热反应特性;并采用非等温动力学法评估了Al、Ni及Al/Ni复合物催化作用下AP分解特性。结果表明,当AP质量含量为38.90%时配方最优,AP@Al/Ni复合燃料的反应热达到最大值。与Al、Ni相比,Al/Ni复合物对AP分解影响最显著,使AP的高温分解峰温降低了76.9 ℃,分解热增加了84.8%;由弗里曼(Friedman)法获得AP@Al/Ni复合燃料中AP的热分解表观活化能为103.9 kJ·mol-1,且该过程服从三维(A3)成核与核生长物理模型。  相似文献   

8.
AMMO/AP推进剂的热分解   总被引:1,自引:0,他引:1  
用DTA、TGA和DSC研究了AMMO/AP推进的热分解.在分解动力学方面研究了加速老化(370天,347K)。AMMO/AP推进剂分解分两步,即AMMO粘合剂的分解为主和AP分解控制为主的区城,区域以推进和损失20%为分界点.AMMO分解与AP的分解相互影响.AMMO分解产生的热加速了AP的分解。Fe2O3和CFe都能活化AMMO/AP推进剂的热分解,CFe主要加速AMMO的分解,Fe2O3催化了AP反应.347K下老化试验370天表明该推进剂是热安定的。  相似文献   

9.
纳米NiB/Al复合粒子的制备及催化AP热分解研究   总被引:1,自引:0,他引:1  
采用沉淀法分别制备了纳米NiB非晶合金及纳米NiB/Al复合粒子.利用X射线粉末衍射(XRD)、透射电子显微镜(TEM)及扫描电子显微镜(SEM)进行表征,发现纳米NiB/Al复合粒子中纳米NiB为40~60 nm的非晶态合金,并在Al颗粒表面呈均匀、连续的复合结构.通过TG、DTA热分析,发现纳米NiB及其复合粒子的含量对高氯酸铵(AP)热分解有显著影响.对实验数据拟合计算发现该体系中复合前后的纳米NiB合金对AP的高温热分解理论最佳含量分别为8.91%和7.93%,两者可分别使AP的高温热分解温度降低至407.34 ℃和389.98 ℃.以1.5%比例添加到AP/HTPB(端羟基聚丁二烯)推进剂体系中,发现复合后的催化剂使其高温分解温度多降低了12.2 ℃,热分解峰合并的趋势更明显.  相似文献   

10.
非等温DSC研究Al/HTPB/TDI体系的固化反应动力学   总被引:9,自引:5,他引:4  
采用非等温差示扫描量热法(DSC)研究了铝粉对端羟基聚丁二烯/甲苯二异氰酸酯体系(HTPB/TDI)固化反应动力学的影响.结果表明,HTPB/TDI体系的固化反应表观活化能约为51.826 kJ·mol-1,反应级数为0.926,指前因子为2.412×105 min-1; 加入铝粉后,体系的固化峰温降低,表观活化能、反应级数和指前因子分别提高至76.402 kJ·mol-1、0.944、2.53×108 min-1,机理函数仍遵循Avrami-Erofeev方程G(α)=[-ln(1-α)]n,只是方程中的指数n有所变化.铝粉对HTPB/TDI固化反应的影响表现为在反应程度18%前起加速作用,18%后起延缓作用.浅析了铝粉影响HTPB/TDI体系固化的原因.  相似文献   

11.
HTPB/AP推进剂的慢速烤燃特征   总被引:1,自引:1,他引:0       下载免费PDF全文
介绍了弹药慢速烤燃试验方法和评判标准,初步分析了影响弹药慢速烤燃响应的因素。对国外在HTPB/AP推进剂慢速烤燃特性方面的研究进行了述评,研究表明,高氯酸铵热分解形成的多孔性形貌是导致AP基推进剂慢速烤燃响应剧烈的重要因素。在此基础上提出了改善HTPB/AP推进剂慢速烤燃响应的技术途径。  相似文献   

12.
针对复合推进剂中超细AP (高氯酸铵)易吸湿、团聚以及纳米催化剂易团聚的问题,在不引入非推进剂配方成分的前提下,制备了纳米CuO/ AP/ HTPB (端羟基聚丁二烯) 复合颗粒。先采用新颖的陶瓷膜-反溶剂法制备纳米CuO/ AP 复合颗粒,然后采用溶剂蒸发法在其表面包覆HT- PB,制得纳米CuO/ AP/ HTPB 复合颗粒。采用SEM、HRTEM、FT-IR、ICP 和XRD 等手段对复合颗粒的粒径、形貌、结构和组成进行表征,并测定了复合颗粒的吸湿性能。结果表明,纳米CuO/ AP/ HT- PB 复合颗粒中纳米CuO 均匀分散,HTPB 在外层均匀膜包覆;复合颗粒呈现为粒径不大于6 滋m的规整六面体,防潮性能优越。纳米CuO/ AP/ HTPB 复合颗粒的制备,可实现纳米CuO 颗粒均分散、超细AP 制备、超细AP 防团聚及防潮,可望显著提升复合推进剂的综合性能。  相似文献   

13.
AP/HTPB底排药柱点火试验研究   总被引:3,自引:3,他引:0  
采用点火瞬时性模拟试验装置和旋转中止燃烧试验装置实验研究了点火药为ZrH2 PbO2的GC-45点火具和点火药为Mg PTFE的改进型点火具对AP/HTPB底排药柱的点火。实验结果表明,前者存在点火延滞期长、燃烧侵蚀现象严重,以致造成射弹射程和密集度下降,因此建议采用以Mg PTFE为点火药的改进型点火具。  相似文献   

14.
为研究丁羟推进剂在高压水射流作用下的点火机理,采用哈特曼粉尘爆炸测试装置,进行了AP/HTPB/ferrocene混合体系粉尘爆炸浓度下限和最小点火能的实验研究,并分析了高氯酸铵(AP)含量、二茂铁含量和环境湿度对粉尘爆炸特性的影响.研究结果表明: 随着AP和二茂铁含量增加,混合体系的粉尘爆炸浓度下限降低,最小点火能降低;当环境湿度由80%增加到90%时,含二茂铁的混合体系的爆炸浓度下限和最小点火能变化趋于平缓.  相似文献   

15.
封锋  陈军  宋洪昌  郑亚 《兵工学报》2010,31(10):1327-1332
在自由基裂解模型和引入高氯酸铵(AP)和铝粉(Al)影响因子的基础上,讨论了催化剂对AP/Al/端羟基聚丁二烯(HTPB)推进剂热分解的影响,采用假说和因子归纳的方法得到了催化影响因子,结合一定数量燃速数据分析和计算机图形学拟合的方法建立了AP/Al/HTPB推进剂催化燃烧模型,该模型可从推进剂化学结构参数出发,定量计算AP/Al/HTPB推进剂的燃速和压强指数。计算结果表明:在一定条件范围内,燃速的理论预测与实验结果吻合较好,误差一般在7%以内,验证了催化燃烧模型在AP/Al/HTPB推进剂应用的可行性,对推进剂配方研制具有一定的指导意义。  相似文献   

16.
大量粗粒度AP和降速剂的添加很难实现低燃速丁羟推进剂高强度的技术要求。研究以静态燃速不高于5.1 mm/s(20℃,6.0 MPa)低燃速丁羟推进剂作为基础配方,通过优选HTPB规格、键合剂组合和添加新型扩链剂的方法提高推进剂力学特性。结果表明,采用新型扩链剂SX,使70℃推进剂的抗拉强度高于1.0 MPa,伸长率大于10%。  相似文献   

17.
马龙泽  余永刚 《含能材料》2017,25(3):178-183
为研究高氯酸铵/端羟基聚丁二烯(AP/HTPB)固体推进剂颗粒的微尺度燃烧特性,基于气固耦合,采用简化的两步总包化学反应动力学机理,建立了二维周期性三明治定常燃烧模型,采用FLUENT软件,数值分析了AP/HTPB的微观燃烧特性。结果表明,AP体积分数为0.75条件下,低压(0.4 MPa)时,AP/HTPB燃烧的总体火焰以预混燃烧为主,AP燃速低于HTPB燃速,随着压力升高,大于2.5 MPa时,火焰呈扩散结构,AP燃速高于HTPB燃速;压力越高,气相对固相的热反馈越强,耦合面上的温度和燃烧速率越高。气相的体积释放速率随着压力的增加而增加,放热区域收缩,相连的两个放热核心区分裂为两个独立的放热核心区。当燃烧压力不变(2.5 MPa),AP体积分数为0.7~0.95时,AP含量越小,则一个周期三明治单元中粘合剂HTPB的宽度相对越大,火焰面趋于分裂为两个狭长带状火焰面,温度随之递增。  相似文献   

18.
利用单幅照相、微热电偶测温、扫描电镜(SEM)、俄歇电子能谱(EDS)以及X射线衍射(XRD)研究了Al/AP/HTPB推进剂(P-A0)、Al/储氢合金/AP/HTPB推进剂(P-A10)和储氢合金/AP/HTPB推进剂(P-A17)的火焰结构、燃烧表面温度、熄火表面形貌、熄火表面残留元素以及熄火表面残留化合物。结果表明,相对于P-A0,P-A10和P-A17燃面上方有更加猛烈的喷射现象;P-A10和P-A17的燃面温度分别提高了5.92℃和7.45℃,凝聚相反应区域分别扩大了13.13%和4730%;P-A17熄火表面相对平整,突起的合金团表面大部分被氧化;P-A10和P.A17熄火表面残碳量相对P-A0分别减少了15.81%和27.61%,说明储氢合金可以提高AP/HTPB推进剂有机组分在燃面处的燃烧效率;P-A0,P-A10和P-A17熄火表面Al含量依次减少,而Al2O3含量依次增多,说明储氢合金的燃烧效率高于Al。储氢合金替代Al作为燃烧剂,可以明显改善AP/HTPB推进剂的燃烧性能。  相似文献   

19.
研究了纳米碳酸盐催化剂对AP/Al/HTPB推进剂的燃速压强指数、爆热和力学性能等的影响.结果表明:纳米催化剂对推进剂在高压强(10~18 MPa)和低压强(4~10 MPa)段的燃烧性能的影响差别较大,但压强指数都能降低到0.2以下,均达到平台推进剂水平; 而且随着纳米催化剂含量增多,推进剂的燃烧效率更充分,爆热也有一定程度的增加; 但是,纳米催化剂对推进剂的力学性能、工艺性能却有一定程度的影响.确定了纳米碳酸盐催化剂在推进剂中配比为0.5%~1%之间.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号