首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to investigate the diversity of endophytic fungi of Aralia elata distributed in Northeast China as well as their capacity to produce saponins. Ninety-six strains of endophytic fungi were isolated, and polymerase chain reaction (PCR) and sequencing were employed to identify the isolates. The saponin concentrations of the culture filtrates of representative strains were measured. The agar diffusion method was used to test antimicrobial activity, while high-performance liquid chromatography (HPLC) was employed to identify the saponins produced by representative strains. Alternaria, Botryosphaeria, Camarosporium, Cryptosporiopsis, Diaporthe, Dictyochaeta, Penicillium, Fusarium, Nectria, Peniophora, Schizophyllum, Cladosporium and Trichoderma species were isolated in this study. Overall, 25% of the isolates belonged to Diaporthe (Diaporthe eres), and 12.5% belonged to Alternaria. The highest concentration of saponins was produced by G22 (2.049 mg/mL). According to the results of the phylogenetic analysis, G22 belonged to the genus Penicillium. The culture filtrate of G22 exhibited antibacterial activity against Staphylococcus aureus, and ginsenosides Re and Rb2 were detected in G22 culture filtrates by HPLC.  相似文献   

2.
Natural rates of chemical production, release, and transport of fluid-borne molecules drive fundamental biological responses to these stimuli. The scaling of the field signaling environment to laboratory conditions recreates essential features of the dynamics and establishes ecological relevance. If appropriately scaled, laboratory simulations of physical regimes, coupled with natural rates of chemical cue/signal emission, facilitate interpretation of field results. From a meta-analysis of papers published in 11 journals over the last 22 years (1984-1986, 1994-1996, 2004-2006), complete dynamic scaling was rare in both field and laboratory studies. Studies in terrestrial systems often involved chemical determinations, but rarely simulated natural aerodynamics in laboratory wind tunnels. Research in aquatic (marine and freshwater) systems seldom scaled either the chemical or physical environments. Moreover, nearly all research, in all environments, focused on organism-level processes without incorporating the effects of individual-based behavior on populations, communities, and ecosystems. As a result, relationships between chemosensory-mediated behavior and ecological function largely remain unexplored. Outstanding exceptions serve as useful examples for guiding future research. Advanced conceptual frameworks and refined techniques offer exciting opportunities for identifying the ecological significance of chemical cues/signals in behavioral interactions and for incorporating individual effects at higher levels of biological organization.  相似文献   

3.
4.
5.
Plant Surface Properties in Chemical Ecology   总被引:17,自引:4,他引:17  
The surface of the primary aerial parts of terrestrial plants is covered by a cuticle, which has crucial autecological functions, but also serves as an important interface in trophic interactions. The chemical and physical properties of this layer contribute to these functions. The cuticle is composed of the cuticular layer and the cuticle proper, which is covered by epicuticular waxes. Whereas the cutin fraction is a polyester-type biopolymer composed of hydroxyl and hydroxyepoxy fatty acids, the cuticular waxes are a complex mixture of long-chain aliphatic and cyclic compounds. These highly lipophilic compounds determine the hydrophobic quality of the plant surface and, together with the microstructure of the waxes, vary in a species-specific manner. The physicochemical characteristics contribute to certain optical features, limit transpiration, and influence adhesion of particles and organisms. In chemical ecology, where interactions between organisms and the underlying (allelo-) chemical principles are studied, it is important to determine what is present at this interface between the plant and the environment. Several useful equations can allow estimation of the dissolution of a given organic molecule in the cuticle and its transport properties. The implementation of these equations is exemplified by examining glucosinolates, which play an important role in interactions of plants with other organisms. An accurate characterization of physicochemical properties of the plant surface is needed to understand its ecological significance. Here, we summarize current knowledge about the physical and chemical properties of plant cuticles and their role in interactions with microorganisms, phytophagous insects, and their antagonists.  相似文献   

6.
Preface: Microbial Chemical Ecology   总被引:1,自引:0,他引:1  
  相似文献   

7.
Stingless bees (Hymenoptera, Apidae: Meliponini) represent a highly diverse group of social bees confined to the world’s tropics and subtropics. They show a striking diversity of structural and behavioral adaptations and are important pollinators of tropical plants. Despite their diversity and functional importance, their ecology, and especially chemical ecology, has received relatively little attention, particularly compared to their relative the honeybee, Apis mellifera. Here, I review various aspects of the chemical ecology of stingless bees, from communication over resource allocation to defense. I list examples in which functions of specific compounds (or compound groups) have been demonstrated by behavioral experiments, and show that many aspects (e.g., queen-worker interactions, host-parasite interactions, neuronal processing etc.) remain little studied. This review further reveals that the vast majority of studies on the chemical ecology of stingless bees have been conducted in the New World, whereas studies on Old World stingless bees are still comparatively rare. Given the diversity of species, behaviors and, apparently, chemical compounds used, I suggest that stingless bees provide an ideal subject for studying how functional context and the need for species specificity may interact to shape pheromone diversification in social insects.  相似文献   

8.
9.
10.
11.
Increasing population has resulted in overexploitation of conventional seeds. The limited supply of water and salinization of agricultural lands are threats to crop production. This creates food insecurity and results in ever‐increasing prices of crops and edible oils. Halophytes that produce high‐quality seeds can serve as sources of oil and edible products. We analyzed the chemical composition and antioxidant activity of seeds from 5 halophytic grasses, i.e., Aeluropus lagopoides, Eragrostis ciliaris, Eragrostis pilosa, Panicum antidotale, and Sporobolus ioclados. These seeds contained crude protein (10–29%), carbohydrates (32–55%), crude fiber (4–21%), minerals (3.8–9.2%), and oil (4–11%), indicating their nutritional potential. Oils of these seeds had suitable fatty‐acid composition with 62–82% unsaturation and only 17–24% saturation. Out of this, 91–94% of the total oil constituted by linoleic, oleic, and palmitic acids. High contents of total phenols (2.8–4.2 mg gallic acid equivalent [GAE] g?1), flavonoids (0.5–1.3 mg Quercetin equivalent [QE] g?1), and tannins (0.3–1.3 mg catechin equivalent [CE] g?1) supported their high antioxidant activity (1,1‐Diphenyl‐2‐picryl‐hydrazyl (DPPH) activity in terms of half maximal inhibitory concentration‐IC50 1.1–5.86 mg mL?1; 2,2′‐azino‐bis3‐ethylbenzothiazoline‐6‐sulphonic acid (ABTS) 18.8–72.8 mmol Trolox g?1; ferric‐reducing antioxidant power 2.0–4.4 mmol Fe+2 g?1). The reverse phase‐high‐pressure liquid chromatography analysis identified the presence of bioactive phenolic antioxidants (mainly gallic acid, chlorogenic acid, coumaric acid, ferulic acid, kaempferol, and quercetin). Due to these characteristic composition and salt tolerability, these plants can serve as potential sources of industrial raw materials for food, edible oil, phytochemicals, and oliochemicals.  相似文献   

12.
13.
Ethylene is a key hormone in plant development, mediating plant responses to abiotic environmental stress, and interactions with attackers and mutualists. Here, we provide a synthesis of the role of ethylene in the context of plant ecology and evolution, and a prospectus for future research in this area. We focus on the regulatory function of ethylene in multi-organismal interactions. In general, plant interactions with different types of organisms lead to reduced or enhanced levels of ethylene. This in turn affects not only the plant’s response to the interacting organism at hand, but also to other organisms in the community. These community-level effects become observable as enhanced or diminished relationships with future commensals, and systemic resistance or susceptibility to secondary attackers. Ongoing comparative genomic and phenotypic analyses continue to shed light on these interactions. These studies have revealed that plants and interacting organisms from separate kingdoms of life have independently evolved the ability to produce, perceive, and respond to ethylene. This signature of convergent evolution of ethylene signaling at the phenotypic level highlights the central role ethylene metabolism and signaling plays in plant interactions with microbes and animals.  相似文献   

14.
15.
16.
17.
Aphids have long been recognized as good phytochemists. They are small sap-feeding plant herbivores with complex life cycles that can involve cyclical parthenogenesis and seasonal host plant alternation, and most are plant specialists. Aphids have distinctive traits for identifying and exploiting their host plants, including the expression of polyphenisms, a form of discrete phenotypic plasticity characteristic of insects, but taken to extreme in aphids. In a relatively small number of species, a social polyphenism occurs, involving sub-adult “soldiers” that are behaviorally or morphologically specialized to defend their nestmates from predators. Soldiers are sterile in many species, constituting a form of eusociality and reproductive division of labor that bears striking resemblances with other social insects. Despite a wealth of knowledge about the chemical ecology of non-social aphids and their phytophagous lifestyles, the molecular and chemoecological mechanisms involved in social polyphenisms in aphids are poorly understood. We provide a brief primer on aspects of aphid life cycles and chemical ecology for the non-specialists, and an overview of the social biology of aphids, with special attention to chemoecological perspectives. We discuss some of our own efforts to characterize how host plant chemistry may shape social traits in aphids. As good phytochemists, social aphids provide a bridge between the study of insect social evolution sociality, and the chemical ecology of plant-insect interactions. Aphids provide many promising opportunities for the study of sociality in insects, and to understand both the convergent and novel traits that characterize complex sociality on plants.  相似文献   

18.
Soil organic matter (OM) contains vast stores of carbon, and directly supports microbial, plant, and animal life by retaining essential nutrients and water in the soil. Soil OM plays important roles in biological, chemical, and physical processes within the soil, and arguably plays a major role in maintaining long-term ecological stability in a changing world. Despite its importance, there is a great deal still unknown about soil OM chemical ecology. The development of sophisticated analytical methods have reshaped our understanding of soil OM composition, which is now believed to be comprised of plant and microbial products at various stages of decomposition. The methods also have recently been applied to study environmental change in various settings and have provided unique insight with respect to soil OM chemical ecology. The goal of this review is to highlight the methods used to characterize soil OM structure, source, and degradation that have enabled precise observations of OM and associated ecological shifts. Although the chemistry of soil OM is important in its overall fate in ecosystems, the studies conducted to date suggest that ecological function is not defined by soil OM chemistry alone. The long-standing questions regarding soil OM stability and recalcitrance will likely be answered when several molecular methods are used in tandem to closely examine structure, source, age, degradation stage, and interactions of specific OM components in soil.  相似文献   

19.
20.
The marriage of chemistry with ecology has been a productive one, providing a wealth of examples of how chemicals play important roles in the loves and lives of living organisms. At first the marriage may have been a simple and monogamous one with the major scientific aim of making proximate analyses of chemically mediated, individual level interactions. But times have changed and chemical ecology is broadening, embracing different approaches and disciplines. There is, for example, increasing appreciation of variability in the systems under study and an increase in evolutionary thinking. Another promising development is greater recognition of the potential importance of chemically mediated interactions for population dynamics and for structuring communities and species coexistence. The latter is an utterly underexplored area in chemical ecology. The field of chemical ecology of insect parasitoids shows some of these promising developments. Responses of parasitoids to infochemicals are increasingly studied with an integrated approach of mechanism and function. This integration of how and why questions significantly enhances the evolutionary and ecological understanding of stimulus–response patterns. The future challenge in chemical ecology is to demonstrate how chemically mediated interactions steer ecological and evolutionary processes at all levels of ecological organization. To reach this goal there is a need for interdisciplinary collaboration among chemists and ecologists working at different levels of organization and with different approaches, with other disciplines as partners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号