首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A type of magnetocrystalline anisotropy and exchange interactions of the novel ternary R3(Fe, V)29 compounds (R = Y, Nd, Sm) have been investigated. The compounds are uniaxial ferromagnets with easy magnetization direction along the [ 0 1] axis of the monoclinic lattice at room temperature. The temperature variations of the magnetic moment and the first anisotropy constant for Y3(Fe, V)29 are presented. The first order magnetization process along the hard magnetization direction takes place for Sm3(Fe, V)29 at T < 120 K. A magnetic anomaly is detected in the temperature dependence of the a.c. susceptibility for Nd3(Fe, V)29 which can be related to a spin reorientation.  相似文献   

2.
Nd3(Fe,Ti)29Cx, carbide has been synthesized by gas-solid reaction. An enhancement of the Curie temperature Tc from 437 K to 575 K is observed, reflecting a lattice expansion of 4.1% upon carbonation. The room temperature saturation magnetization Ms of the carbide is 145.5 A m2 kg 1 and the average hyperfine field, Heff, 24.8 T. The magnetic structure of Nd3(Fe,Ti)29Cx carbide changes from easy-cone-like in the case of the parent compound to axial-like after carbonation with a room temperature anisotropy field HA of 8 T.  相似文献   

3.
The novel ternary rare-earth iron-rich interstitial compounds R3(Fe,Cr)29Xy (R=Nd, Sm and X=N, C) with the monoclinic Nd3(Fe,Ti)29 structure have been successfully synthesized. Introduction of the interstitial nitrogen and carbon atoms led to a relative volume expansion ΔV/V of about 6% and an enhancement of Curie temperatures Tc about 268 K for the nitride and about 139 K for the carbide, respectively. The Nd3Fe24.5Cr4.5Xy compounds have a planar anisotropy at room temperature. A first-order magnetization process (FOMP) with critical field Bcr=4.4 T and 3.1 T at room temperature were observed for the Nd-nitride and carbide compounds, respectively. The Sm3Fe24Cr5Xy compounds were found to have a large uniaxial anisotropy of about 18 T at 4.2 K and about 11 T at 293 K. A FOMP with Bcr=2.3 T was also observed in the Sm-nitride compounds at 4.2 K. Magnets with coercivity of μOjHc0.8 T at 293 K has been successfully developed from the Sm3Fe24Cr5Xy (X---N and C) phases.  相似文献   

4.
Powder X-ray and neutron diffraction and magnetic measurements have been performed on R2RhSi3 (R=Ho and Er) compounds at low temperatures. The compounds crystallize in a derivative of the hexagonal AlB2-type structure. The crystal structure parameters have been refined on the basis of the X-ray and neutron diffraction patterns collected in the paramagnetic region. These compounds are antiferromagnets with Néel temperatures of 5.2 K for Ho2RhSi3 and 5 K for Er2RhSi3. Both compounds exhibit collinear magnetic structures, described by the propagation vector k=(1/2,0,0) for Ho2RhSi3 and k=(0,0,0) for Er2RhSi3. This magnetic order is stable in the temperature range between 1.5 K and the Néel temperature.  相似文献   

5.
A powder X-ray diffraction investigation of the new ternary compounds Zr6CoAs2-type R6MnSb2 and R6MnBi2 (R=Y, Lu, Dy, Ho) is reported. The compounds Ho6MnSb2 (a=0.8070(2) nm, c=0.4230(1) nm), Lu6MnSb2 (a=0.7930(1) nm, c=0.4173(1) nm), Y6MnBi2 (a=0.8242(1) nm, c=0.4292(1) nm), Dy6MnBi2 (a=0.8211(1) nm, c=0.4286(1) nm), Ho6MnBi2 (a=0.8164(1) nm, c=0.4250(1) nm) and Lu6MnBi2 (a=0.8019(2) nm, c=0.4185(1) nm) crystallize in the hexagonal Zr6CoAs2-type structure (space group P6b2m No. 189). The Zr6CoAs2-type structure is a superstructure of the Fe2P-type structure.  相似文献   

6.
Polycrystalline powder sample of KSr4(BO3)3 was synthesized by high-temperature solid-state reaction. The influence of different rare earth dopants, i.e. Tb3+, Tm3+ and Ce3+, on thermoluminescence (TL) of KSr4(BO3)3 phosphor was discussed. The TL, photoluminescence (PL) and some dosimetric properties of Ce3+-activated KSr4(BO3)3 phosphor were studied. The effect of the concentration of Ce3+ on TL intensity was investigated and the result showed that the optimum Ce3+ concentration was 0.2 mol%. The TL kinetic parameters of KSr4(BO3)3:0.002 Ce3+ phosphor were calculated by computer glow curve deconvolution (CGCD) method. Characteristic emission peaking at about 407 and 383 nm due to the 4f05d1 → 2F(5/2, 7/2) transitions of Ce3+ ion were observed both in PL and three-dimensional (3D) TL spectra. The dose–response of KSr4(BO3)3:0.002 Ce3+ to γ-ray was linear in the range from 1 to 1000 mGy. In addition, the decay of the TL intensity of KSr4(BO3)3:0.002 Ce3+ was also investigated.  相似文献   

7.
Single-phase compounds Gd3(Fe1−xTix)29 (x=0.0110.034) have been synthesized. Gd3(Fe1−xTix)29 crystallises in a monoclinic lattice with space group P21/c, and the crystal structure is refined by the Rietveld technique based on X-ray powder diffraction data. Thermomagnetic analysis indicates that the Curie temperature of the compounds ranges from 517 K to 538 K. The saturation magnetizations of the Gd3(Fe1−xTix)29 (x=0.011, 0.022, 0.034) at 1.5 K are 103.6, 102.0 and 94.3 Am2/kg, and the anisotropy fields at 1.5 K are 6.0, 6.2 and 6.4T, respectively.  相似文献   

8.
The crystal structure of the compound Sm4Pd4Si3 was determined by the single-crystal method (KM-4 automatic diffractometer, Mo K radiation. Sm4Pd4Si4 has the monoclinic Nd4Rh4Ge, type structure: space C2/c, mC44 (No. 15). a = 20.693(6), B = 5.584(1), C = 7.699(2) Å, β = 109.48(3)°, V = 838 Å, Z = 4, μ - 36.23 mm1, R =F = 0.0537, R F = 0.0435 for 1652 unique reflections. The coordination numbers of samarium atoms are 17 and 18. For palladium and silicon atoms icosahedra and trigonal prisms with additional atoms are typical as coordination polyhedra. The structure of Sm4Pd4Si4 is composed of fragments of the YPd2Si and Y1Rh2Si2 structure in a ratio 1:1.  相似文献   

9.
Praseodymium dicarboxylate, [Pr(H2O)]2[O2C(CH2)3CO2]3.4H2O]–glutarate, Pr[glut], is synthesized by hydrothermal techniques. The title compound crystallizes in the monoclinic space group C2/c (No. 15). The rare earth cation is coordinated by nine oxygen atoms, eight oxygen atoms from the carboxylate groups and one from the water molecule. The local symmetry of Pr site is low, Cs. The absorption spectra of Pr[glut] are recorded from the visible to the far IR domain at 300, 77 and 9 K. Under various Ar+ laser excitations no emission is detected from 3P0 and 1D2 excited levels of Pr3+ ion. In the low temperature absorption spectra only one electronic line is recorded for 3H43P0 transition. It confirms a unique local environment for the rare earth ion in Pr[glut]. The utility of the ‘barycenter curves’ in the attribution of electronic lines is demonstrated. Energy level scheme of 36 Stark components is deduced from the absorption spectra. The parametric calculation was performed on the whole 4f2 (Pr3+) configuration with the starting set of crystal field parameters obtained previously for the Eu3+ ion in the isostructural compound. Eight free ion and nine phenomenological crystal field parameters in C2v symmetry reproduce quite well several electronic levels of Pr3+ ion experimentally observed in Pr[glut]. A good r.m.s. standard deviation of 14.8 cm−1 is obtained.  相似文献   

10.
Ternary R3Pd4Ge4 samples (R=Nd, Eu, Er) were investigated by means of X-ray single crystal (four circle diffractometer Philips PW1100, MoK radiation) and powder diffraction (MX Labo diffractometer, CuK radiation). The Er3Pd3.68(1)Ge4 compound belongs to the Gd3Cu4Ge4 structure type, space group Immm, a=4.220(2) Å, b=6.843(2) Å, c=14.078(3) Å, R1=0.0484 for 598 reflections with Fo>4σ(Fo) from X-ray single crystal diffraction data. No ternary R3Pd4Ge4 compound when R is Nd or Eu was observed. The Nd and Eu containing samples appeared to be multiphase. Ternary phases observed in the Nd3Pd4Ge4 and Eu3Pd4Ge4 alloys and their crystallographic characteristics are the following: NdPd2Ge2, CeGa2Al2 structure type, space group I4/mmm, a=4.3010(2) Å, c=10.0633(2) Å (X-ray powder diffraction data); NdPd0.6Ge1.4, AlB2 structure type, space group P6/mmm, a=4.2305(2) Å, c=4.1723(2) Å (X-ray powder diffraction data); Nd(Pd0.464(1)Ge0.536(1))2, KHg2 structure type, space group Imma, a=4.469(2) Å, b=7.214(2) Å, c=7.651(3) Å, R1=0.0402 for 189 reflections with Fo>4σ(Fo) (X-ray single crystal diffraction data); Eu(Pd,Ge)2, AlB2 structure type, space group P6/mmm, a=4.311(2) Å, c=4.235(2) Å; EuPdGe, EuNiGe structure type, space group P21/c, and ternary compound with unknown structure (X-ray powder diffraction data).  相似文献   

11.
The crystal structure of new ternary R3Si1.25Se7 (R = Pr, Nd and Sm) compounds (Dy3Ge1.25S7 structure type, Pearson symbol hP22.5, space group P63, a = 1.05268 (3) nm, c = 0.60396 (3) nm, RI = 0.0897 for Pr3Si1.25Se7; a = 1.04760 (3) nm, c = 0.60268 (3) nm, RI = 0.0891 for Nd3Si1.25Se7; a = 1.04166 (6) nm, c = 0.59828 (6) nm for Sm3Si1.25Se7) was determined using X-ray powder diffraction. The nearest neighbours of the R and Si atoms are exclusively Se atoms. The latter form distorted trigonal prisms around the R atoms, octahedra around the Si1 atoms and tetrahedra around the Si2 atoms. Tetrahedral surrounding exists for Se1 and Se3 atoms. Six neighbours surround every Se2 atom.  相似文献   

12.
The magnetocrystalline anisotropy of R2Fe17 (R=Y, Gd, Tb, Ho and Er) and their hydrides are studied by analyzing the magnetization curves of single crystal samples in the temperature range 4.2–300 K in magnetic fields up to 140 kOe. There is no noticeable influence of hydrogenation on the magnetic anisotropy in the Y2Fe17 and Gd2Fe17 compounds. An easy-plane to easy-cone transition is detected for a Tb2Fe17H3 single crystal after hydrogenation. A significant change of the magnetization process has been observed in the hydrides Ho2Fe17H3 and Er2Fe17H3. Hydrogenation induces a FOMP-type transition in the Ho2Fe17H3 compound and, on the contrary, leads to the disappearance of the FOMP type transition in the Er2Fe17H3 compound. The obtained results are discussed on the basis of a model based on the interaction of the quadrupolar moment and the magnetic moment of the 4f electron shell of the rare earth ion with the interstitial hydrogen. It is established that the orientation of the quadrupolar moment of the asymmetric 4f shell with respect to the direction of the resulting magnetic moment of 4f electrons plays an important role.  相似文献   

13.
We report on magnetisation, resistivity and specific heat measurements of R2Pd2In compounds synthesised with the nominal composition R40Pd41In19 (R=La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y). Magnetic and thermodynamic measurements reveal antiferromagnetic order below 32 K for this series except for Y, La, Yb and Lu. An appreciably wide homogeneity range is found for Ce2Pd2+xIn1−x where ferro- or antiferromagnetic order or both occur with typical features of a Kondo lattice. Yb2Pd2In exhibits intermediate valent behaviour and no magnetic order could be detected down to 0.3 K.  相似文献   

14.
NdFe10+xMo2−2xTix compounds with 0≤x≤1.0 have been prepared by using the reduction–diffusion process with superfine precursors as starting materials. With increasing Ti-content, the intrinsic magnetic properties, such as the Curie temperature, saturation magnetization and magnetocrystalline field, are improved. The interstitial compounds NdFe10+xMo2−2xTixZy (Z=N, H) were obtained and exhibit significant enhancement of the intrinsic magnetic properties upon nitrogenation.  相似文献   

15.
The mixtures of LiBH4 with halides of Ce or La in a molar ratio of 3:1 were investigated to explore their hydrogen storage properties. The ball milling of LiBH4 with chloride of Ce or La yielded Ce(BH4)3 and La(BH4)3, while fluoride of Ce or La did not react with LiBH4 during extended ball milling at room temperature. The dehydrogenation temperatures of the ball-milled mixtures were reduced to 220-320 °C, which were much lower than that of pure LiBH4. The diborane emission during hydrogen release was observed at a low level. The dehydrogenation temperature is found to be affected by the composition of rare earth halides, but less influenced by ball milling time. The endothermic dehydrogenation reactions produced lithium halides, hydrides and borides of the corresponding rare earth element. Moreover, the LiBH4 + 1/3(Ce, La)(Cl, F)3 showed partial reversibility through the formation of an unknown borohydride, allowing for a potential hydrogen storage system.  相似文献   

16.
Using X-ray powder and single crystal diffraction, the crystal structures of the Nd(Ru0.6Ge0.4)2 and ErRuGe compounds were investigated. The compounds belong to the KHg2 and TiNiSi type structure, respectively.  相似文献   

17.
The structure of the ternary phase Co3Al8Ga, Pearson symbol oI96, space group Immm, a=12.0081(7) Å, b=7.5701(6) Å, c=15.394(1) Å is isotypic with Co2NiAl9. Powder diffraction data are reported for this ternary intermetallic compound. Using liquid quenching, the metastable pseudoternary decagonal phase d-Co(Al, Ga)3(m) was obtained in the aluminium-rich portion of the ternary system Co–Al–Ga. Gallium substitutes for aluminium atoms in the d-Co(Al, Ga)3(m) phase up to a mol fraction xGa=0.10. In the phase of the binary system Co–Al richest in aluminium, Co2Al9, the aluminium atomic positions can be occupied by gallium up to a gallium content of xGa=0.05.  相似文献   

18.
Phase formation in rapidly solidified R2T17 intermetallics   总被引:1,自引:0,他引:1  
Rapid solidification was utilized to produce a series of light and heavy rare earth-transition metal intermetallics in the RH–Co, RL–Co/Fe, and Sm–Co(Fe) systems with RH = Dy and Tb and RL = Pr and Sm. The influence of Nb–C and Zr–C additions on phase formation in the binary and ternary alloys has also been investigated. The X-ray diffraction patterns obtained with synchrotron radiation were refined by the Rietveld method for structural phase determination and analysis. It was found that the ability to create disorder strongly depended on the rare earth element, with light rare earth systems possessing more disorder, and rapid solidification effectively suppressed the development of long-range order in these compounds. Cobalt in contrast to iron favored the formation of disordered structures. Replacement up to two out of the three of the cobalt atoms with iron in the Sm–Co–Fe system has retained the establishment of the disordered TbCu7-variant and exhibited complete cobalt–iron solubility. Additions of Nb–C and Zr–C have also greatly influenced the order formation. The comparison of lattice parameters of the intermetallic compounds obtained by rapid solidification to the parameters of equilibrium 2–17 phases summarized in the literature revealed that formation of partially ordered and disordered structures was associated with expansion of the both a- and c-axes in Th2Zn17- and Th2Ni17-type phases for all binary compounds.  相似文献   

19.
The binary system H2O–Fe(NO3)3 has been investigated at temperature ranging between –25 and 47 °C.The solid–liquid equilibria of the ternary system H2O–Fe(NO3)3–Co(NO3)2 were studied at −15 and −25 °C by using a synthetic method based on conductivity measurements which allows all the characteristic points of the isotherms to be determined, and the stable solid phases which appear are respectively: ice, Fe(NO3)3·9H2O, Fe(NO3)3·6H2O, Co(NO3)2·9H2O, Co(NO3)2·6H2O and Co(NO3)2·3H2O.  相似文献   

20.
INTRODUCTIONTheR3(Fe,M)29(R=rareearth;M=Ti,V,Mn,Mo,etc)compoundsarenewlydiscoveredrareearthironintermetalics.Theyalmostexist...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号