首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human immunodeficiency virus type 1 (HIV-1) entry into target cells involves sequential binding of the gp120 exterior envelope glycoprotein to CD4 and to specific chemokine receptors. Soluble CD4 (sCD4) is thought to mimic membrane-anchored CD4, and its binding alters the conformation of the HIV-1 envelope glycoproteins. Two cross-competing monoclonal antibodies, 17b and CG10, that recognize CD4-inducible gp120 epitopes and that block gp120-chemokine receptor binding were used to investigate the nature and functional significance of gp120 conformational changes initiated by CD4 binding. Envelope glycoproteins derived from both T-cell line-adapted and primary HIV-1 isolates exhibited increased binding of the 17b antibody in the presence of sCD4. CD4-induced exposure of the 17b epitope on the oligomeric envelope glycoprotein complex occurred over a wide range of temperatures and involved movement of the gp120 V1/V2 variable loops. Amino acid changes that reduced the efficiency of 17b epitope exposure following CD4 binding invariably compromised the ability of the HIV-1 envelope glycoproteins to form syncytia or to support virus entry. Comparison of the CD4 dependence and neutralization efficiencies of the 17b and CG10 antibodies suggested that the epitopes for these antibodies are minimally accessible following attachment of gp120 to cell surface CD4. These results underscore the functional importance of these CD4-induced changes in gp120 conformation and illustrate viral strategies for sequestering chemokine receptor-binding regions from the humoral immune response.  相似文献   

2.
Infection by some human immunodeficiency virus type 1 (HIV-1) isolates is enhanced by the binding of subneutralizing concentrations of soluble receptor, soluble CD4 (sCD4), or monoclonal antibodies directed against the viral envelope glycoproteins. In this work, we studied the abilities of different antibodies to mediate activation of the envelope glycoproteins of a primary HIV-1 isolate, YU2, and identified the regions of gp120 envelope glycoprotein contributing to activation. Binding of antibodies to a variety of epitopes on gp120, including the CD4 binding site, the third variable (V3) loop, and CD4-induced epitopes, enhanced the entry of viruses containing YU2 envelope glycoproteins. Fab fragments of antibodies directed against either the CD4 binding site or V3 loop also activated YU2 virus infection. The activation phenotype was conferred on the envelope glycoproteins of a laboratory-adapted HIV-1 isolate (HXBc2) by replacing the gp120 V3 loop or V1/V2 and V3 loops with those of the YU2 virus. Infection by the YU2 virus in the presence of activating antibodies remained inhibitable by macrophage inhibitory protein 1beta, indicating dependence on the CCR5 coreceptor on the target cells. Thus, antibody enhancement of YU2 entry involves neither Fc receptor binding nor envelope glycoprotein cross-linking, is determined by the same variable loops that dictate enhancement by sCD4, and probably proceeds by a process fundamentally similar to the receptor-activated virus entry pathway.  相似文献   

3.
We have isolated and sequenced a novel 11-kDa virucidal protein, named cyanovirin-N (CV-N), from cultures of the cyanobacterium (blue-green alga) Nostoc ellipsosporum. We also have produced CV-N recombinantly by expression of a corresponding DNA sequence in Escherichia coli. Low nanomolar concentrations of either natural or recombinant CV-N irreversibly inactivate diverse laboratory strains and primary isolates of human immunodeficiency virus (HIV) type 1 as well as strains of HIV type 2 and simian immunodeficiency virus. In addition, CV-N aborts cell-to-cell fusion and transmission of HIV-1 infection. Continuous, 2-day exposures of uninfected CEM-SS cells or peripheral blood lymphocytes to high concentrations (e.g., 9,000 nM) of CV-N were not lethal to these representative host cell types. The antiviral activity of CV-N is due, at least in part, to unique, high-affinity interactions of CV-N with the viral surface envelope glycoprotein gp120. The biological activity of CV-N is highly resistant to physicochemical denaturation, further enhancing its potential as an anti-HIV microbicide.  相似文献   

4.
Oxidative stress and interleukins in seminal plasma during leukocytospermia   总被引:1,自引:0,他引:1  
Various roles for the viral receptor, CD4, have been proposed in facilitating human immunodeficiency virus type 1 (HIV-1) entry, including virion binding to the target cell and the induction of conformational changes in the viral envelope glycoproteins required for the membrane fusion reaction. Here, we compare the structural requirements in the CDR2-like loop of CD4 domain 1, the major contact site of the gp120 envelope glycoprotein, for gp120 binding and virus entry. For every CD4 mutant examined, the level of cell surface expression and the gp120 binding affinity were sufficient to explain the relative ability to function as a viral receptor. The decrease in relative infectibility associated with decreased gp120 binding affinity was more pronounced at lower cell surface CD4 concentrations. These results imply that both receptor density and affinity determine the efficiency of HIV-1 entry and that specific structures in the CD4 residues examined are probably not required for HIV-1 entry functions other than gp120 binding.  相似文献   

5.
It is unclear whether proteolytic processing of the human immunodeficiency virus type 1 (HIV-1) Gag protein is dependent on virus assembly at the plasma membrane. Mutations that prevent myristylation of HIV-1 Gag proteins have been shown to block virus assembly and release from the plasma membrane of COS cells but do not prevent processing of Gag proteins. In contrast, in HeLa cells similar mutations abolished processing of Gag proteins as well as virus production. We have now addressed this issue with CD4(+) T cells, which are natural target cells of HIV-1. In these cells, myristylation of Gag proteins was required for proteolytic processing of Gag proteins and production of extracellular viral particles. This result was not due to a lack of expression of the viral protease in the form of a Gag-Pol precursor or a lack of interaction between unmyristylated Gag and Gag-Pol precursors. The processing defect of unmyristylated Gag was partially rescued ex vivo by coexpression with wild-type myristylated Gag proteins in HeLa cells. The cell type-dependent processing of HIV-1 Gag precursors was also observed when another part of the plasma membrane binding signal, a polybasic region in the matrix protein, was mutated. The processing of unmyristylated Gag precursors was inhibited in COS cells by HIV-1 protease inhibitors. Altogether, our findings demonstrate that the processing of HIV-1 Gag precursors in CD4(+) T cells occurs normally at the plasma membrane during viral morphogenesis. The intracellular environment of COS cells presumably allows activation of the viral protease and proteolytic processing of HIV-1 Gag proteins in the absence of plasma membrane binding.  相似文献   

6.
We have studied the effects of CC-chemokines on human immunodeficiency virus type 1 (HIV-1) infection, focusing on the infectivity enhancement caused by RANTES. High RANTES concentrations increase the infectivity of HIV-1 isolates that use CXC-chemokine receptor 4 for entry. However, RANTES can have a similar enhancing effect on macrophagetropic viruses that enter via CC-chemokine receptor 5 (CCR5), despite binding to the same receptor as the virus. Furthermore, RANTES enhances the infectivity of HIV-1 pseudotyped with the envelope glycoprotein of murine leukemia virus or vesicular stomatitis virus, showing that the mechanism of enhancement is independent of the route of virus-cell fusion. The enhancing effects of RANTES are not mediated via CCR5 or other known chemokine receptors and are not mimicked by MIP-1alpha or MIP-1beta. The N-terminally modified derivative aminooxypentane RANTES (AOP-RANTES) efficiently inhibits HIV-1 infection via CCR5 but otherwise mimics RANTES by enhancing viral infectivity. There are two mechanisms of enhancement: one apparent when target cells are pretreated with RANTES (or AOP-RANTES) for several hours, and the other apparent when RANTES (or AOP-RANTES) is added during virus-cell absorption. We believe that the first mechanism is related to cellular activation by RANTES, whereas the second is an increase in virion attachment to target cells.  相似文献   

7.
The human immunodeficiency virus-type 1 (HIV-1) envelope glycoproteins interact with receptors on the target cell and mediate virus entry by fusing the viral and cell membranes. The structure of the envelope glycoproteins has evolved to fulfill these functions while evading the neutralizing antibody response. An understanding of the viral strategies for immune evasion should guide attempts to improve the immunogenicity of the HIV-1 envelope glycoproteins and, ultimately, aid in HIV-1 vaccine development.  相似文献   

8.
9.
T22, an analog of polyphemusin II (18 amino acid residues), was found to block T-tropic human immunodeficiency virus type 1 (HIV-1) entry into target cells as a CXCR4 inhibitor. We synthesized T134, a small analog (14 amino acid residues) of T22 with reduced positive charges. T134 exhibited highly potent activity and significantly less cytotoxicity in comparison to that of T22. T134 prevents the anti-CXCR4 monoclonal antibody from binding to peripheral blood mononuclear cells but has no effect on the binding of anti-CCR5 monoclonal antibodies. Since T134 inhibits the binding of stromal cell-derived factor-1 (SDF-1) to MT-4 cells, it seems that T134 prevents HIV-1 entry by binding to CXCR4. The bicyclam AMD3100 has also been shown to block HIV-1 entry via CXCR4 but not via CCR5. Both T134 and AMD3100 are CXCR4 antagonists and low-molecular-weight compounds but have different structures. Our results indicate that T134 is active against wild-type T-tropic HIV-1 strains and against AMD3100-resistant strains.  相似文献   

10.
Soluble (s) CD14, a marker for monocyte/macrophage activation and a mediator of bacterial lipopolysaccharide (LPS) action, was elevated in serum from human immunodeficiency virus type 1 (HIV- 1)-infected individuals (n = 92) compared with seronegative controls. The highest levels were found in patients with advanced clinical and immunological disease. Patients with ongoing clinical events had significantly higher sCD14 levels than symptomatic HIV-1-infected individuals without clinical events, with especially elevated levels in patients infected with Mycobacterium avium complex (MAC). On longitudinal testing of patients (n = 26) with less than 100 x 10(6) CD4 lymphocytes/L at baseline, we found that increasing sCD14 serum concentrations per time unit were associated with death, whereas no differences in CD4 cell number decrease were found between survivors and nonsurvivors. In vitro studies showed that HIV-1 glycoprotein 120 and purified protein derivative (PPD) from M avium (MAC-PPD) stimulated normal monocytes to release sCD14. Furthermore, MAC-PPD induced tumor necrosis factor (TNF) release from monocytes through interactions with CD14 and, importantly, the addition of sCD14 enhanced this MAC-PPD stimulatory effect. Our findings suggest that the CD14 molecule may be involved in the immunopathogenesis of HIV-1 infection, and it is conceivable that serial determination of sCD14 may give useful predictive information concerning disease progression and survival in HIV-1-infected patients.  相似文献   

11.
12.
Viruses use a variety of mechanisms to escape recognition by cytotoxic T lymphocytes (CTL). The available evidence suggests that the main mechanisms of CTL escape caused by viral sequence variation are loss of epitope binding to MHC molecules or altered recognition by T cell receptors. These types of mutations occur in both human immunodeficiency virus type 1 (HIV-1) and human T cell leukaemia virus type 1 (HTLV-1) infections. In HIV-1, CTL escape is one factor that may cause progression of disease. In HTLV-1, however, CTL escape mutants never predominate in the viral population.  相似文献   

13.
The vif gene of the human immunodeficiency virus (HIV-1) is required for productive virus infection of primary blood mononuclear cells (PBMCs) and macrophages in vitro. Replication of HIV-1 vif- mutants in T-lymphoid cell lines varies and is dependent on the cell line used for virus production. To further understand the role of Vif in HIV-1 infection, we constructed to vif deletion mutants from a molecular clone derived from an African patient (HIV-1Zr6). Cell-free Zr6 vif- virus pools made from transfected rhabdomyosarcoma (RD) cells do not replicate when added to cultures of stimulated PBMCs. However, vif mutants were able to spread from transfected RD cells to PBMCs if cell-to-cell contact was permitted. By Western blot analysis, viral structural proteins expressed after transfection of RD cells by wild-type or vif mutant proviruses were indistinguishable. However, binding of vif mutants to PBMCs or to purified CD4 and virus internalization were significantly reduced when compared with wild-type virus. The defects in cell-free infection, CD4 binding, and internalization were rescued by transcomplementation using a vif expression plasmid. Our results suggest a novel level at which the HIV-1 vif gene product acts to enhance cell-free infection and indicate that vif plays an important role in promoting HIV-1 binding and internalization. Combined with the previous reports of vif's effect at other steps in infection, this suggests that vif is a pleuripotent gene product that affects multiple stages of the infective process.  相似文献   

14.
The mechanism of CD4-mediated fusion via activated human immunodeficiency virus type 1 (HIV-1) gp41 and the biological significance of soluble CD4 (sCD4)-induced shedding of gp120 are poorly understood. The purpose of these investigations was to determine whether shedding of gp120 led to fusion activation or inactivation. BJAB cells (TF228.1.16) stably expressing HIV-1 envelope glycoproteins (the gp120-gp41 complex) were used to examine the effects of pH and temperature on sCD4-induced shedding of gp120 and on cell-to-cell fusion (syncytium formation) with CD4+ SupT1 cells. sCD4-induced shedding of gp120 was maximal at pH 4.5 to 5.5 and did not occur at pH 8.5. At physiologic pH, sCD4-induced shedding of gp120 occurred at 22, 37, and 40 degrees C but neither at 16 nor 4 degrees C. In contrast, syncytia formed at pH 8.5 (maximally at pH 7.5) but not at pH 4.5 to 5.5. At pH 7.5, syncytia formed at 37 and 40 degrees C but not at 22, 16, or 4 degrees C. Preincubation of cocultures of TF228.1.16 and SupT1 cells at 4, 16, or 22 degrees C before the shift to 37 degrees C resulted in similar, increased, or decreased syncytium formation, respectively, compared with the control. Furthermore, an activated intermediate of CD4-gp120-gp41 ternary complex may form at 16 degrees C; this intermediate rapidly executes fusion upon a shift to 37 degrees C but readily decays upon a shift to the shedding-permissive but fusion-nonpermissive temperature of 22 degrees C. These physicochemical data indicate that shedding of HIV-1 gp120 is not an integral step in the fusion cascade and that CD4 may inactivate the fusion complex in a process analogous to sCD4-induced shedding of gp120.  相似文献   

15.
Synthetic multibranched peptides derived from the V3 domain of human immunodeficiency virus type 1 (HIV-1) gp120 inhibit HIV-1 entry into CD4+ and CD4- cells by two distinct mechanisms: competitive inhibition of HIV-1 binding to CD4-/GalCer+ colon cells and postbinding inhibition of HIV-1 fusion with CD4+ lymphocytes. In the present study, we have characterized the cellular binding sites for the V3 peptide SPC3, which possesses eight V3 consensus motifs GPGRAF radially branched on a neutral polyLys core matrix. These binding sites are glycosphingolipids that share a common structural determinant, i.e., a terminal galactose residue with a free hydroxyl group in position 4: GalCer/sulfatide on CD4-/GalCer+ colon cells; LacCer and its sialosyl derivatives GM3 and GD3 on CD4+ human lymphocytes. These data suggest that the V3 peptide binds to the GalCer/sulfatide receptor for HIV-1 gp120 on HT-29 cells and thus acts as a competitive inhibitor of virus binding to these CD4- cells, in full agreement with previously published virological data. In contrast, SPC3 does not bind to the CD4 receptor, in agreement with the data showing that the peptide inhibits HIV-1 infection of CD4+ cells by acting at a postattachment step. The binding of SPC3 to LacCer, GM3, and GD3, expressed by CD4+ lymphocytes, suggests a role for these glycosphingolipids in the fusion process between the viral envelope and the plasma membrane of CD4+ cells. Since the multivalent peptide can theoretically bind to several of these glycosphingolipids, we hypothesize that the resulting cross-linking of membrane components may affect the fluidity of the plasma membrane and/or membrane curvature, altering the virus-cell fusion mechanism.  相似文献   

16.
17.
Despite the ability of soluble forms of CD4 (sCD4) and related CD4 derivatives to neutralize human immunodeficiency type 1 (HIV-1) infectivity in vitro, these agents have shown little evidence of efficacy in clinical trials with infected individuals. These disappointing findings may be related to recent observations that much higher concentrations of sCD4 are required for in vitro neutralization of primary HIV-1 isolates compared to laboratory-adapted strains. An alternative CD4-based therapeutic strategy exploits CD4 as a targeting agent to direct cytotoxic molecules to selectively kill HIV-infected cells. In this report we demonstrate that CD4-Pseudomonas exotoxin inhibits spreading infection by primary HIV-1 isolates known to be highly refractory to neutralization by soluble CD4; the observed potency is at least as great as for a prototypic sCD4-sensitive, laboratory-adapted HIV-1 strain. Thus, the in vitro efficacy of a CD4-based agent, which acts by targeted killing of infected cells, appears not to be compromised by features which render primary HIV-1 isolates refractory to neutralization by sCD4 derivatives. These results have important conceptual and practical implications for CD4-based therapeutic strategies.  相似文献   

18.
CD4-expressing T cells in lymphoid organs are infected by the primary strains of HIV and represent one of the main sources of virus replication. Gene therapy strategies are being developed that allow the transfer of exogenous genes into CD4(+) T lymphocytes whose expression might prevent viral infection or replication. Insights into the mechanisms that govern virus entry into the target cells can be exploited for this purpose. Major determinants of the tropism of infection are the CD4 molecules on the surface of the target cells and the viral envelope glycoproteins at the viral surface. The best characterized and most widely used gene transfer vectors are derived from Moloney murine leukemia virus (MuLV). To generate MuLV-based retroviral gene transfer vector particles with specificity of infection for CD4-expressing cells, we attempted to produce viral pseudotypes, consisting of MuLV capsid particles and the surface (SU) and transmembrane (TM) envelope glycoproteins gp120-SU and gp41-TM of HIV type 1 (HIV-1). Full-length HIV-1 envelope glycoproteins were expressed in the MuLV env-negative packaging cell line TELCeB6. Formation of infectious pseudotype particles was not observed. However, using a truncated variant of the transmembrane protein, lacking sequences of the carboxyl-terminal cytoplasmic domain, pseudotyped retroviruses were generated. Removal of the carboxyl-terminal domain of the transmembrane envelope protein of HIV-1 was therefore absolutely required for the generation of the viral pseudotypes. The virus was shown to infect CD4-expressing cell lines, and infection was prevented by antisera specific for gp120-SU. This retroviral vector should prove useful for the study of HIV infection events mediated by HIV-1 envelope glycoproteins, and for the targeting of CD4(+) cells during gene therapy of AIDS.  相似文献   

19.
The binding of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein, gp120, to its cell surface receptor, CD4, represents a molecular interaction involving distinct alterations in protein structure. Consequently, the pattern of epitopes presented on the gp120-CD4 complex should differ from those on free gp120. To investigate this concept, mice were immunized with covalently crosslinked complexes of viral HIV-1IIIBgp120 and soluble CD4. Two monoclonal antibodies (MoAbs) obtained from the immunized mice exhibited a novel epitope specificity. The MoAbs were marginally reactive with HIV-1IIIBgp120, highly reactive with gp120-CD4 complexes, and unreactive with soluble CD4. The same pattern of reactivity was seen in solid-phase assays using HIV-1(451)gp120. A similar specificity for complexes was evident in flow cytometry experiments, in which MoAb reactivity was dependent upon the attachment of gp120 to CD4-positive cells. In addition, MoAb reactivity was detected upon the interaction of CD4 receptors with purified HIV-1IIIB virions. Notably, seroantibodies from HIV-positive individuals competed for MoAb binding, indicating that the epitope is immunogenic in humans. The results demonstrated that crosslinked gp120-CD4 complexes elicit antibodies to cryptic gp120 epitopes that are exposed during infection in response to receptor binding. These findings may have important implications for the consideration of HIV envelope-receptor complexes as targets for virus neutralization.  相似文献   

20.
Human immunodeficiency virus type 1 (HIV-1) can readily accept envelope (Env) glycoproteins from distantly related retroviruses. However, we previously showed that the HIV-1 Env glycoprotein complex is excluded even from particles formed by the Gag proteins of another lentivirus, visna virus, unless the matrix domain of the visna virus Gag polyprotein is replaced by that of HIV-1. We also showed that the integrity of the HIV-1 matrix domain is critical for the incorporation of wild-type HIV-1 Env protein but not for the incorporation of a truncated form which lacks the 144 C-terminal amino acids of the cytoplasmic domain of the transmembrane glycoprotein. We report here that the C-terminal truncation of the transmembrane glycoprotein also allows the efficient incorporation of HIV-1 Env proteins into viral particles formed by the Gag proteins of the widely divergent Moloney murine leukemia virus (Mo-MLV). Additionally, pseudotyping of a Mo-MLV-based vector with the truncated rather than the full-length HIV-1 Env allowed efficient transduction of human CD4+ cells. These results establish that Mo-MLV-based vectors can be used to target cells susceptible to infection by HIV-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号