首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Melatonin acts as a multifunctional molecule that takes part in various physiological processes, especially in the protection against abiotic stresses, such as salinity, drought, heat, cold, heavy metals, etc. These stresses typically elicit reactive oxygen species (ROS) accumulation. Excessive ROS induce oxidative stress and decrease crop growth and productivity. Significant advances in melatonin initiate a complex antioxidant system that modulates ROS homeostasis in plants. Numerous evidences further reveal that melatonin often cooperates with other signaling molecules, such as ROS, nitric oxide (NO), and hydrogen sulfide (H2S). The interaction among melatonin, NO, H2S, and ROS orchestrates the responses to abiotic stresses via signaling networks, thus conferring the plant tolerance. In this review, we summarize the roles of melatonin in establishing redox homeostasis through the antioxidant system and the current progress of complex interactions among melatonin, NO, H2S, and ROS in higher plant responses to abiotic stresses. We further highlight the vital role of respiratory burst oxidase homologs (RBOHs) during these processes. The complicated integration that occurs between ROS and melatonin in plants is also discussed.  相似文献   

3.
Exposure of plants to toxic concentrations of metals leads to disruption of the cellular redox status followed by an accumulation of reactive oxygen species (ROS). ROS, like hydrogen peroxide, can act as signaling molecules in the cell and induce signaling via mitogen-activated protein kinase (MAPK) cascades. MAPK cascades are evolutionary conserved signal transduction modules, able to convert extracellular signals to appropriate cellular responses. In this review, our current understanding about MAPK signaling in plant metal stress is discussed. However, this knowledge is scarce compared to research into the role of MAPK signaling in the case of other abiotic and biotic stresses. ROS production is a common response induced by different stresses and undiscovered analogies may exist with metal stress. Therefore, further attention is given to MAPK signaling in other biotic and abiotic stresses and its interplay with other signaling pathways to create a framework in which the involvement of MAPK signaling in metal stress may be studied.  相似文献   

4.
5.
Abiotic stressors, such as drought, heavy metals, and high salinity, are causing huge crop losses worldwide. These abiotic stressors are expected to become more extreme, less predictable, and more widespread in the near future. With the rapidly growing human population and changing global climate conditions, it is critical to prevent global crop losses to meet the increasing demand for food and other crop products. The reactive gaseous signaling molecule nitric oxide (NO) is involved in numerous plant developmental processes as well as plant responses to various abiotic stresses through its interactions with various molecules. Together, these interactions lead to the homeostasis of reactive oxygen species (ROS), proline and glutathione biosynthesis, post-translational modifications such as S-nitrosylation, and modulation of gene and protein expression. Exogenous application of various NO donors positively mitigates the negative effects of various abiotic stressors. In view of the multidimensional role of this signaling molecule, research over the past decade has investigated its potential in alleviating the deleterious effects of various abiotic stressors, particularly in ROS homeostasis. In this review, we highlight the recent molecular and physiological advances that provide insights into the functional role of NO in mediating various abiotic stress responses in plants.  相似文献   

6.
Brassinosteroid hormones (BRs) multitask to smoothly regulate a broad spectrum of vital physiological processes in plants, such as cell division, cell expansion, differentiation, seed germination, xylem differentiation, reproductive development and light responses (photomorphogenesis and skotomorphogenesis). Their importance is inferred when visible abnormalities arise in plant phenotypes due to suboptimal or supraoptimal hormone levels. This group of steroidal hormones are major growth regulators, having pleiotropic effects and conferring abiotic stress resistance to plants. Numerous abiotic stresses are the cause of significant loss in agricultural yield globally. However, plants are well equipped with efficient stress combat machinery. Scavenging reactive oxygen species (ROS) is a unique mechanism to combat the deleterious effects of abiotic stresses. In light of numerous reports in the past two decades, the complex BR signaling under different stress conditions (drought, salinity, extreme temperatures and heavy metals/metalloids) that drastically hinders the normal metabolism of plants is gradually being untangled and revealed. Thus, crop improvement has substantial potential by tailoring either the brassinosteroid signaling, biosynthesis pathway or perception. This review aims to explore and dissect the actual mission of BRs in signaling cascades and summarize their positive role with respect to abiotic stress tolerance.  相似文献   

7.
As sessile organisms, plants must tolerate various environmental stresses. Plant hormones play vital roles in plant responses to biotic and abiotic stresses. Among these hormones, jasmonic acid (JA) and its precursors and derivatives (jasmonates, JAs) play important roles in the mediation of plant responses and defenses to biotic and abiotic stresses and have received extensive research attention. Although some reviews of JAs are available, this review focuses on JAs in the regulation of plant stress responses, as well as JA synthesis, metabolism, and signaling pathways. We summarize recent progress in clarifying the functions and mechanisms of JAs in plant responses to abiotic stresses (drought, cold, salt, heat, and heavy metal toxicity) and biotic stresses (pathogen, insect, and herbivore). Meanwhile, the crosstalk of JA with various other plant hormones regulates the balance between plant growth and defense. Therefore, we review the crosstalk of JAs with other phytohormones, including auxin, gibberellic acid, salicylic acid, brassinosteroid, ethylene, and abscisic acid. Finally, we discuss current issues and future opportunities in research into JAs in plant stress responses.  相似文献   

8.
9.
Heavy metal toxicity is one of the most devastating abiotic stresses. Heavy metals cause serious damage to plant growth and productivity, which is a major problem for sustainable agriculture. It adversely affects plant molecular physiology and biochemistry by generating osmotic stress, ionic imbalance, oxidative stress, membrane disorganization, cellular toxicity, and metabolic homeostasis. To improve and stimulate plant tolerance to heavy metal stress, the application of biostimulants can be an effective approach without threatening the ecosystem. Melatonin (N-acetyl-5-methoxytryptamine), a biostimulator, plant growth regulator, and antioxidant, promotes plant tolerance to heavy metal stress by improving redox and nutrient homeostasis, osmotic balance, and primary and secondary metabolism. It is important to perceive the complete and detailed regulatory mechanisms of exogenous and endogenous melatonin-mediated heavy metal-toxicity mitigation in plants to identify potential research gaps that should be addressed in the future. This review provides a novel insight to understand the multifunctional role of melatonin in reducing heavy metal stress and the underlying molecular mechanisms.  相似文献   

10.
Nitric oxide (NO) is a widely distributed gaseous signaling molecule in plants that can be synthesized through enzymatic and non-enzymatic pathways and plays an important role in plant growth and development, signal transduction, and response to biotic and abiotic stresses. Cadmium (Cd) is a heavy metal pollutant widely found in the environment, which not only inhibits plant growth but also enters humans through the food chain and endangers human health. To reduce or avoid the adverse effects of Cd stress, plants have evolved a range of coping mechanisms. Many studies have shown that NO is also involved in the plant response to Cd stress and plays an important role in regulating the resistance of plants to Cd stress. However, until now, the mechanisms by which Cd stress regulates the level of endogenous NO accumulation in plant cells remained unclear, and the role of exogenous NO in plant responses to Cd stress is controversial. This review describes the pathways of NO production in plants, the changes in endogenous NO levels in plants under Cd stress, and the effects of exogenous NO on regulating plant resistance to Cd stress.  相似文献   

11.
Abiotic stresses are the major environmental factors that play a significant role in decreasing plant yield and production potential by influencing physiological, biochemical, and molecular processes. Abiotic stresses and global population growth have prompted scientists to use beneficial strategies to ensure food security. The use of organic compounds to improve tolerance to abiotic stresses has been considered for many years. For example, the application of potential external osmotic protective compounds such as proline is one of the approaches to counteract the adverse effects of abiotic stresses on plants. Proline level increases in plants in response to environmental stress. Proline accumulation is not just a signal of tension. Rather, according to research discussed in this article, this biomolecule improves plant resistance to abiotic stress by rising photosynthesis, enzymatic and non-enzymatic antioxidant activity, regulating osmolyte concentration, and sodium and potassium homeostasis. In this review, we discuss the biosynthesis, sensing, signaling, and transport of proline and its role in the development of various plant tissues, including seeds, floral components, and vegetative tissues. Further, the impacts of exogenous proline utilization under various non-living stresses such as drought, salinity, high and low temperatures, and heavy metals have been extensively studied. Numerous various studies have shown that exogenous proline can improve plant growth, yield, and stress tolerance under adverse environmental factors.  相似文献   

12.
13.
本文研究了重金属和石油烃复合污染土壤中,腐植酸对草本植物吸收重金属的影响。结果显示:腐植酸大幅度地降低了污染土壤中可溶性和交换态重金属含量,但提高了植物可利用态重金属含量。土壤添加腐植酸后,除Ni外,重金属潜在生物有效性和可淋出性因子大于1,这表明大多数重金属对植物具有潜在的有效性。此外,腐植酸增加了铅(Pb)、铜(Cu)、镉(Cd)和镍(Ni)在供试植物幼苗和根部的积累,最高的是高羊茅幼苗,达264.7%,生物富集系数从0.30提高到1.10。芸苔根中Ni和Pb的生物富集系数也有所提高。这些研究结果表明,石油烃与重金属同时污染的情况下,加入腐植酸可以促进植物吸收重金属,但降低重金属淋失,防止地下污染。  相似文献   

14.
The gas nitric oxide (NO) plays an important role in several biological processes in plants, including growth, development, and biotic/abiotic stress responses. Salinity has received increasing attention from scientists as an abiotic stressor that can seriously harm plant growth and crop yields. Under saline conditions, plants produce NO, which can alleviate salt-induced damage. Here, we summarize NO synthesis during salt stress and describe how NO is involved in alleviating salt stress effects through different strategies, including interactions with various other signaling molecules and plant hormones. Finally, future directions for research on the role of NO in plant salt tolerance are discussed. This summary will serve as a reference for researchers studying NO in plants.  相似文献   

15.
C2H2 zinc finger proteins (ZFPs) play important roles in plant development and response to abiotic stresses, and have been studied extensively. However, there are few studies on ZFPs in mangroves and mangrove associates, which represent a unique plant community with robust stress tolerance. MpZFP1, which is highly induced by salt stress in the mangrove associate Millettia pinnata, was cloned and functionally characterized in this study. MpZFP1 protein contains two zinc finger domains with conserved QALGGH motifs and targets to the nucleus. The heterologous expression of MpZFP1 in Arabidopsis increased the seeds’ germination rate, seedling survival rate, and biomass accumulation under salt stress. The transgenic plants also increased the expression of stress-responsive genes, including RD22 and RD29A, and reduced the accumulation of reactive oxygen species (ROS). These results indicate that MpZFP1 is a positive regulator of plant responses to salt stress due to its activation of gene expression and efficient scavenging of ROS.  相似文献   

16.
17.
18.
The plant mitogen-activated protein kinase (MAPK) cascade plays an important role in mediating responses to biotic and abiotic stresses and is the main pathway through which extracellular stimuli are transduced intracellularly as signals. Our previous research showed that the GhMKK6-GhMPK4 cascade signaling pathway plays an important role in cotton immunity. To further analyze the role and regulatory mechanism of the GhMKK6-GhMPK4 cascade signaling pathway in cotton resistance to Fusarium wilt, we functionally analyzed GhMPK4. Our results show that silencing GhMPK4 reduces cotton tolerance to Fusarium wilt and reduces the expression of several resistance genes. Further experiments revealed that GhMPK4 is similar to GhMKK6, both of whose overexpression cause unfavorable cotton immune response characteristics. By using a yeast two-hybrid screening library and performing a bioinformatics analysis, we screened and identified a negative regulator of the MAPK kinase-protein phosphatase AP2C1. Through the functional analysis of AP2C1, it was found that, after being silenced, GhAP2C1 increased resistance to Fusarium wilt, but GhAP2C1 overexpression caused sensitivity to Fusarium wilt. These findings show that GhAP2C1 interacts together with GhMPK4 to regulate the immune response of cotton to Fusarium oxysporum, which provides important data for functionally analyzing and studying the feedback regulatory mechanism of the MAPK cascade and helps to clarify the regulatory mechanism through which the MAPK cascade acts in response to pathogens.  相似文献   

19.
20.
The life of any living organism can be defined as a hurdle due to different kind of stresses. As with all living organisms, plants are exposed to various abiotic stresses, such as drought, salinity, extreme temperatures and chemical toxicity. These primary stresses are often interconnected, and lead to the overproduction of reactive oxygen species (ROS) in plants, which are highly reactive and toxic and cause damage to proteins, lipids, carbohydrates and DNA, which ultimately results in oxidative stress. Stress-induced ROS accumulation is counteracted by enzymatic antioxidant systems and non-enzymatic low molecular weight metabolites, such as ascorbate, glutathione and α-tocopherol. The above mentioned low molecular weight antioxidants are also capable of chelating metal ions, reducing thus their catalytic activity to form ROS and also scavenge them. Hence, in plant cells, this triad of low molecular weight antioxidants (ascorbate, glutathione and α-tocopherol) form an important part of abiotic stress response. In this work we are presenting a review of abiotic stress responses connected to these antioxidants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号