首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background: Mesenchymal stem cell (MSC) intervention has been associated with lung protection. We attempted to determine whether mouse gingival-derived mesenchymal stem cells (GMSCs) could protect against bleomycin-induced pulmonary fibrosis. Methods: Mice were divided into three groups: control (Con), bleomycin (Bl), and bleomycin + MSCs (Bl + MSCs). Mice were treated with 5 mg/kg bleomycin via transtracheal instillation to induce pulmonary fibrosis. We assessed the following parameters: histopathological severity of injury in the lung, liver, kidney, and aortic tissues; the degree of pulmonary fibrosis; pulmonary inflammation; pulmonary oedema; profibrotic factor levels in bronchoalveolar lavage fluid (BALF) and lung tissue; oxidative stress-related indicators and apoptotic index in lung tissue; and gene expression levels of IL-1β, IL-8, TNF-α, lysophosphatidic acid (LPA), lysophosphatidic acid receptor 1 (LPA1), TGF-β, matrix metalloproteinase 9 (MMP-9), neutrophil elastase (NE), MPO, and IL-10 in lung tissue. Results: GMSC intervention attenuated bleomycin-induced pulmonary fibrosis, pulmonary inflammation, pulmonary oedema, and apoptosis. Bleomycin instillation notably increased expression levels of the IL-1β, IL-8, TNF-α, LPA, LPA1, TGF-β, MMP-9, NE, and MPO genes and attenuated expression levels of the IL-10 gene in lung tissue, and these effects were reversed by GMSC intervention. Bleomycin instillation notably upregulated MDA and MPO levels and downregulated GSH and SOD levels in lung tissue, and these effects were reversed by GMSC intervention. GMSC intervention prevented upregulation of neutrophil content in the lung, liver, and kidney tissues and the apoptotic index in lung tissue. Conclusions: GMSC intervention exhibits anti-inflammatory and antioxidant capacities. Deleterious accumulation of neutrophils, which is reduced by GMSC intervention, is a key component of bleomycin-induced pulmonary fibrosis. GMSC intervention impairs bleomycin-induced NE, MMP-9, LPA, APL1, and TGF-β release.  相似文献   

2.
Diabetes is a major risk factor for the development of cardiovascular disease with a higher incidence of myocardial infarction. This study explores the role of metformin, a first-line antihyperglycemic agent, in postinfarction fibrotic and inflammatory remodeling in mice. Three-month-old C57BI/6J mice were submitted to 30 min cardiac ischemia followed by reperfusion for 14 days. Intraperitoneal treatment with metformin (5 mg/kg) was initiated 15 min after the onset of reperfusion and maintained for 14 days. Real-time PCR was used to determine the levels of COL3A1, αSMA, CD68, TNF-α and IL-6. Increased collagen deposition and infiltration of macrophages in heart tissues are associated with upregulation of the inflammation-associated genes in mice after 14 days of reperfusion. Metformin treatment markedly reduced postinfarction fibrotic remodeling and CD68-positive cell population in mice. Moreover, metformin resulted in reduced expression of COL3A1, αSMA and CD68 after 14 days of reperfusion. Taken together, these results open new perspectives for the use of metformin as a drug that counteracts adverse myocardial fibroticand inflammatory remodeling after MI.  相似文献   

3.
Renal fibrosis, the final pathway of chronic kidney disease, is caused by genetic and epigenetic mechanisms. Although DNA methylation has drawn attention as a developing mechanism of renal fibrosis, its contribution to renal fibrosis has not been clarified. To address this issue, the effect of zebularine, a DNA methyltransferase inhibitor, on renal inflammation and fibrosis in the murine unilateral ureteral obstruction (UUO) model was analyzed. Zebularine significantly attenuated renal tubulointerstitial fibrosis and inflammation. Zebularine decreased trichrome, α-smooth muscle actin, collagen IV, and transforming growth factor-β1 staining by 56.2%. 21.3%, 30.3%, and 29.9%, respectively, at 3 days, and by 54.6%, 41.9%, 45.9%, and 61.7%, respectively, at 7 days after UUO. Zebularine downregulated mRNA expression levels of matrix metalloproteinase (MMP)-2, MMP-9, fibronectin, and Snail1 by 48.6%. 71.4%, 31.8%, and 42.4%, respectively, at 7 days after UUO. Zebularine also suppressed the activation of nuclear factor-κB (NF-κB) and the expression of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin (IL)-, and IL-6, by 69.8%, 74.9%, and 69.6%, respectively, in obstructed kidneys. Furthermore, inhibiting DNA methyltransferase buttressed the nuclear expression of nuclear factor (erythroid-derived 2)-like factor 2, which upregulated downstream effectors such as catalase (1.838-fold increase at 7 days, p < 0.01), superoxide dismutase 1 (1.494-fold increase at 7 days, p < 0.05), and NAD(P)H: quinone oxidoreduate-1 (1.376-fold increase at 7 days, p < 0.05) in obstructed kidneys. Collectively, these findings suggest that inhibiting DNA methylation restores the disrupted balance between pro-inflammatory and anti-inflammatory pathways to alleviate renal inflammation and fibrosis. Therefore, these results highlight the possibility of DNA methyltransferases as therapeutic targets for treating renal inflammation and fibrosis.  相似文献   

4.
A proteomic approach was used to characterize potential mediators involved in the improvement in cardiac fibrosis observed with the administration of the mitochondrial antioxidant MitoQ in obese rats. Male Wistar rats were fed a standard diet (3.5% fat; CT) or a high-fat diet (35% fat; HFD) and treated with vehicle or MitoQ (200 μM) in drinking water for 7 weeks. Obesity modulated the expression of 33 proteins as compared with controls of the more than 1000 proteins identified. These include proteins related to endoplasmic reticulum (ER) stress and oxidative stress. Proteomic analyses revealed that HFD animals presented with an increase in cardiac transthyretin (TTR) protein levels, an effect that was prevented by MitoQ treatment in obese animals. This was confirmed by plasma levels, which were associated with those of cardiac levels of both binding immunoglobulin protein (BiP), a marker of ER stress, and fibrosis. TTR stimulated collagen I production and BiP in cardiac fibroblasts. This upregulation was prevented by the presence of MitoQ. In summary, the results suggest a role of TTR in cardiac fibrosis development associated with obesity and the beneficial effects of treatment with mitochondrial antioxidants.  相似文献   

5.
Polycystic ovarian syndrome (PCOS) is the most common endocrine–metabolic disorder affecting a vast population worldwide; it is linked with anovulation, mitochondrial dysfunctions and hormonal disbalance. Mutations in mtDNA have been identified in PCOS patients and likely play an important role in PCOS aetiology and pathogenesis; however, their causative role in PCOS development requires further investigation. As a low-grade chronic inflammation disease, PCOS patients have permanently elevated levels of inflammatory markers (TNF-α, CRP, IL-6, IL-8, IL-18). In this review, we summarise recent data regarding the role of mtDNA mutations and mitochondrial malfunctions in PCOS pathogenesis. Furthermore, we discuss recent papers dedicated to the identification of novel biomarkers for early PCOS diagnosis. Finally, traditional and new mitochondria-targeted treatments are discussed. This review intends to emphasise the key role of oxidative stress and chronic inflammation in PCOS pathogenesis; however, the exact molecular mechanism is mostly unknown and requires further investigation.  相似文献   

6.
Pulmonary fibrosis is a progressive and fatal disorder characterized by dysregulated repair after recurrent injury. Destruction of the lung architecture with excess extracellular matrix deposition induces respiratory failure with hypoxia and progressive dyspnea. The impact of hypoxia on pulmonary endothelial cells during pulmonary fibrogenesis is unclear. Using a magnetic-activated cell sorting system, pulmonary endothelial cells were isolated from a mouse model of pulmonary fibrosis induced by intratracheally administered bleomycin. When endothelial cells were exposed to hypoxic conditions, a hypoxia-inducible factor (HIF)-2α protein was detected in CD31- and α-smooth muscle actin (SMA)-positive cells. Levels of plasminogen activator inhibitor 1, von Willebrand factor, and matrix metalloproteinase 12 were increased in endothelial cells isolated from bleomycin-treated mice exposed to hypoxic conditions. When endothelial cells were cultured under hypoxic conditions, levels of fibrotic mediators, transforming growth factor-β and connective tissue growth factor, were elevated only in endothelial cells from bleomycin-treated and not from saline-treated lungs. The increased expression of α-SMA and mesenchymal markers and collagen production in bleomycin- or hypoxia-stimulated endothelial cells were further elevated in endothelial cells from bleomycin-treated mouse lungs cultured under hypoxic conditions. Exposure to hypoxia damaged endothelial cells and enhanced fibrogenesis-related damage in bleomycin-treated pulmonary endothelial cells.  相似文献   

7.
Pulmonary arterial hypertension (PAH) is characterized by pulmonary vascular remodeling. Recent evidence supports that inflammation plays a key role in triggering and maintaining pulmonary vascular remodeling. Recent studies have shown that garlic extract has protective effects in PAH, but the precise role of allicin, a compound derived from garlic, is unknown. Thus, we used allicin to evaluate its effects on inflammation and fibrosis in PAH. Male Wistar rats were divided into three groups: control (CON), monocrotaline (60 mg/kg) (MCT), and MCT plus allicin (16 mg/kg/oral gavage) (MCT + A). Right ventricle (RV) hypertrophy and pulmonary arterial medial wall thickness were determined. IL-1β, IL-6, TNF-α, NFκB p65, Iκβ, TGF-β, and α-SMA were determined by Western blot analysis. In addition, TNF-α and TGF-β were determined by immunohistochemistry, and miR-21-5p and mRNA expressions of Cd68, Bmpr2, and Smad5 were determined by RT-qPCR. Results: Allicin prevented increases in vessel wall thickness due to TNF-α, IL-6, IL-1β, and Cd68 in the lung. In addition, TGF-β, α-SMA, and fibrosis were lower in the MCT + A group compared with the MCT group. In the RV, allicin prevented increases in TNF-α, IL-6, and TGF-β. These observations suggest that, through the modulation of proinflammatory and profibrotic markers in the lung and heart, allicin delays the progression of PAH.  相似文献   

8.
Kidney fibrosis is the final outcome of chronic kidney disease (CKD). Adenosine plays a significant role in protection against cellular damage by activating four subtypes of adenosine receptors (ARs), A1AR, A2AAR, A2BAR, and A3AR. A2AAR agonists protect against inflammation, and A3AR antagonists effectively inhibit the formation of fibrosis. Here, we showed for the first time that LJ-4459, a newly synthesized dual-acting ligand that is an A2AAR agonist and an A3AR antagonist, prevents the progression of tubulointerstitial fibrosis. Unilateral ureteral obstruction (UUO) surgery was performed on 6-week-old male C57BL/6 mice. LJ-4459 (1 and 10 mg/kg) was orally administered for 7 days, started at 1 day before UUO surgery. Pretreatment with LJ-4459 improved kidney morphology and prevented the progression of tubular injury as shown by decreases in urinary kidney injury molecular-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) excretion. Obstruction-induced tubulointerstitial fibrosis was attenuated by LJ-4459, as shown by a decrease in fibrotic protein expression in the kidney. LJ-4459 also inhibited inflammation and oxidative stress in the obstructed kidney, with reduced macrophage infiltration, reduced levels of pro-inflammatory cytokines, as well as reduced levels of reactive oxygen species (ROS). These data demonstrate that LJ-4459 has potential as a therapeutic agent against the progression of tubulointerstitial fibrosis.  相似文献   

9.
Cholestatic liver diseases can progress to end-stage liver disease and reduce patients’ quality of life. Although their underlying mechanisms are still incompletely elucidated, oxidative stress is considered to be a key contributor to these diseases. Heme oxygenase-1 (HO-1) is a cytoprotective enzyme that displays antioxidant action. It has been found that this enzyme plays a protective role against various inflammatory diseases. However, the role of HO-1 in cholestatic liver diseases has not yet been investigated. Here, we examined whether pharmacological induction of HO-1 by cobalt protoporphyrin (CoPP) ameliorates cholestatic liver injury. To this end, a murine model of 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet feeding was used. Administration of CoPP ameliorated liver damage and cholestasis with HO-1 upregulation in DDC diet-fed mice. Induction of HO-1 by CoPP suppressed the DDC diet-induced oxidative stress and hepatocyte apoptosis. In addition, CoPP attenuated cytokine production and inflammatory cell infiltration. Furthermore, deposition of the extracellular matrix and expression of fibrosis-related genes after DDC feeding were also decreased by CoPP. HO-1 induction decreased the number of myofibroblasts and inhibited the transforming growth factor-β pathway. Altogether, these data suggest that the pharmacological induction of HO-1 ameliorates cholestatic liver disease by suppressing oxidative stress, hepatocyte apoptosis, and inflammation.  相似文献   

10.
11.
12.
Cystic fibrosis (CF) is caused by a defect in the cystic fibrosis transmembrane conductance regulator protein (CFTR) which instigates a myriad of respiratory complications including increased vulnerability to lung infections and lung inflammation. The extensive influx of pro-inflammatory cells and production of mediators into the CF lung leading to lung tissue damage and increased susceptibility to microbial infections, creates a highly inflammatory environment. The CF inflammation is particularly driven by neutrophil infiltration, through the IL-23/17 pathway, and function, through NE, NETosis, and NLRP3-inflammasome formation. Better understanding of these pathways may uncover untapped therapeutic targets, potentially reducing disease burden experienced by CF patients. This review outlines the dysregulated lung inflammatory response in CF, explores the current understanding of CFTR modulators on lung inflammation, and provides context for their potential use as therapeutics for CF. Finally, we discuss the determinants that need to be taken into consideration to understand the exaggerated inflammatory response in the CF lung.  相似文献   

13.
Background: Silymarin (SIL) has long been utilized to treat a variety of liver illnesses, but due to its poor water solubility and low membrane permeability, it has a low oral bioavailability, limiting its therapeutic potential. Aim: Design and evaluate hepatic-targeted delivery of safe biocompatible formulated SIL-loaded chitosan nanoparticles (SCNPs) to enhance SIL’s anti-fibrotic effectiveness in rats with CCl4-induced liver fibrosis. Methods: The SCNPs and chitosan nanoparticles (CNPs) were prepared by ionotropic gelation technique and are characterized by physicochemical parameters such as particle size, morphology, zeta potential, and in vitro release studies. The therapeutic efficacy of successfully formulated SCNPs and CNPs were subjected to in vivo evaluation studies. Rats were daily administered SIL, SCNPs, and CNPs orally for 30 days. Results: The in vivo study revealed that the synthesized SCNPs demonstrated a significant antifibrotic therapeutic action against CCl4-induced hepatic injury in rats when compared to treated groups of SIL and CNPs. SCNP-treated rats had a healthy body weight, with normal values for liver weight and liver index, as well as significant improvements in liver functions, inflammatory indicators, antioxidant pathway activation, and lipid peroxidation reduction. The antifibrotic activities of SCNPs were mediated by suppressing the expression of the main fibrosis mediators TGFβR1, COL3A1, and TGFβR2 by boosting the hepatic expression of protective miRNAs; miR-22, miR-29c, and miR-219a, respectively. The anti-fibrotic effects of SCNPs were supported by histopathology and immunohistochemistry (IHC) study. Conclusions: According to the above results, SCNPs might be the best suitable carrier to target liver cells in the treatment of liver fibrosis.  相似文献   

14.
Naringenin is a major flavanone found in grapes, tangelos, blood oranges, lemons, pummelo, and tangerines. It is known to have anti-inflammatory, antioxidant, anticancer, antimutagenic, antifibrogenic, and antiatherogenic pharmacological properties. This study aims to investigate the anti-inflammatory effects of naringenin in ethanol-induced gastric damage in vivo and ethanol-stimulated KATO III cells in vitro. Our results showed that pretreatment with naringenin significantly protected mice from ethanol-induced hemorrhagic damage, epithelial cell loss, and edema with leucocytes. It reduced gastric ulcers (GU) by suppressing ethanol-induced nuclear factor-κB (NF-κB) activity and decreasing the levels of nitric oxide (NO), malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-8 (IL-8), and myeloperoxidase (MPO). In addition, pretreatment with naringenin might inhibit the secretion of TNF-α, IL-6, and IL-8, as well as the proteins cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) via the suppression of NF-κB and mitogen-activated protein kinase (MAPK) signaling in ethanol-stimulated stomach epithelial KATO III cells. Together, the results of this study highlight the gastroprotective effect of naringenin in GU of mice by inhibiting gastric secretion and acidity, reducing inflammation and oxidative stress, suppressing NF-κB activity, and restoring the histological architecture. These findings suggested that naringenin has therapeutic potential in the alleviation of ethanol-induced GU.  相似文献   

15.
Liver fibrosis, a common liver dysfunction with high morbidity and mortality rates, is the leading cause of cirrhosis and hepatocellular carcinoma, for which there are no effective therapies. Ivermectin is an antiparasitic drug that also has been showing therapeutic actions in many other diseases, including antiviral and anticancer actions, as well as treating metabolic diseases. Herein, we evaluated the function of ivermectin in regulating liver fibrosis. Firstly, carbon tetrachloride (CCl4)-injected Balb/c mice were used to assess the antifibrosis effects of ivermectin in vivo. Further, CFSC, a rat hepatic stellate cell (HSC) line, was used to explore the function of ivermectin in HSC activation in vitro. The in vivo data showed that ivermectin administration alleviated histopathological changes, improved liver function, reduced collagen deposition, and downregulated the expression of profibrotic genes. Mechanistically, the ivermectin treatment inhibited intrahepatic macrophage accumulation and suppressed the production of proinflammatory factors. Importantly, the ivermectin administration significantly decreased the protein levels of α-smooth muscle actin (α-SMA) both in vivo and in vitro, suggesting that the antifibrotic effects of ivermectin are mainly due to the promotion of HSC deactivation. The present study demonstrates that ivermectin may be a potential therapeutic agent for the prevention of hepatic fibrosis.  相似文献   

16.
Macrophages play critical roles in the pathogenesis of non-alcoholic steatohepatitis (NASH). However, it is unclear which macrophage subsets are critically involved in the development of inflammation and fibrosis in NASH. In TSNO mice fed a high-fat/cholesterol/cholate-based diet, which exhibit advanced liver fibrosis that mimics human NASH, we found that Kupffer cells (KCs) were less abundant and recruited macrophages were more abundant, forming hepatic crown-like structures (hCLS) in the liver. The recruited macrophages comprised two subsets: CD11c+/Ly6C and CD11c/Ly6C+ cells. CD11c+ cells were present in a mesh-like pattern around the lipid droplets, constituting the hCLS. In addition, CD11c+ cells colocalized with collagen fibers, suggesting that this subset of recruited macrophages might promote advanced liver fibrosis. In contrast, Ly6C+ cells were present in doughnut-like inflammatory lesions, with a lipid droplet in the center. Finally, RNA sequence analysis indicates that CD11c+/Ly6C cells promote liver fibrosis and hepatic stellate cell (HSC) activation, whereas CD11c/Ly6C+ cells are a macrophage subset that play an anti-inflammatory role and promote tissue repair in NASH. Taken together, our data revealed changes in liver macrophage subsets during the development of NASH and shed light on the roles of the recruited macrophages in the pathogenesis of advanced fibrosis in NASH.  相似文献   

17.
(1) Background: We previously demonstrated that disruption of IP6K1 improves metabolism, protecting mice from high-fat diet-induced obesity, insulin resistance, and non-alcoholic fatty liver disease and steatohepatitis. Age-induced metabolic dysfunction is a major risk factor for metabolic diseases. The involvement of IP6K1 in this process is unknown. (2) Methods: Here, we compared body and fat mass, insulin sensitivity, energy expenditure and serum-, adipose tissue- and liver-metabolic parameters of chow-fed, aged, wild type (aWT) and whole body Ip6k1 knockout (aKO) mice. (3) Results: IP6K1 was upregulated in the adipose tissue and liver of aWT mice compared to young WT mice. Moreover, Ip6k1 deletion blocked age-induced increase in body- and fat-weight and insulin resistance in mice. aKO mice oxidized carbohydrates more efficiently. The knockouts displayed reduced levels of serum insulin, triglycerides, and non-esterified fatty acids. Ip6k1 deletion partly protected age-induced decline of the thermogenic uncoupling protein UCP1 in inguinal white adipose tissue. Targets inhibited by IP6K1 activity such as the insulin sensitivity- and energy expenditure-inducing protein kinases, protein kinase B (PKB/Akt) and AMP-activated protein kinase (AMPK), were activated in the adipose tissue and liver of aKO mice. (4) Conclusions: Ip6k1 deletion maintains healthy metabolism in aging and thus, targeting this kinase may delay the development of age-induced metabolic dysfunction.  相似文献   

18.
Convincing evidence has emerged demonstrating that impairment of mitochondrial function is critically important in regulating alveolar epithelial cell (AEC) programmed cell death (apoptosis) that may contribute to aging-related lung diseases, such as idiopathic pulmonary fibrosis (IPF) and asbestosis (pulmonary fibrosis following asbestos exposure). The mammalian mitochondrial DNA (mtDNA) encodes for 13 proteins, including several essential for oxidative phosphorylation. We review the evidence implicating that oxidative stress-induced mtDNA damage promotes AEC apoptosis and pulmonary fibrosis. We focus on the emerging role for AEC mtDNA damage repair by 8-oxoguanine DNA glycosylase (OGG1) and mitochondrial aconitase (ACO-2) in maintaining mtDNA integrity which is important in preventing AEC apoptosis and asbestos-induced pulmonary fibrosis in a murine model. We then review recent studies linking the sirtuin (SIRT) family members, especially SIRT3, to mitochondrial integrity and mtDNA damage repair and aging. We present a conceptual model of how SIRTs modulate reactive oxygen species (ROS)-driven mitochondrial metabolism that may be important for their tumor suppressor function. The emerging insights into the pathobiology underlying AEC mtDNA damage and apoptosis is suggesting novel therapeutic targets that may prove useful for the management of age-related diseases, including pulmonary fibrosis and lung cancer.  相似文献   

19.
Chronic alcohol exposure can lead to liver pathology relating to inflammation and oxidative stress, which are two of the major factors in the incidence of liver fibrosis and even liver cancer. The underlying molecular mechanisms regarding hepatic lesions associated with alcohol are not fully understood. Considering that the recently identified iRhom2 is a key pathogenic mediator of inflammation, we performed in vitro and in vivo experiments to explore its regulatory role in alcohol-induced liver fibrosis. We found that iRhom2 knockout significantly inhibited alcohol-induced inflammatory responses in vitro, including elevated expressions of inflammatory cytokines (IL-1β, IL-6, IL-18, and TNF-α) and genes associated with inflammatory signaling pathways, such as TACE (tumor necrosis factor-alpha converting enzyme), TNFR1 (tumor necrosis factor receptor 1), and TNFR2, as well as the activation of NF-κB. The in vivo results confirmed that long-term alcohol exposure leads to hepatocyte damage and fibrous accumulation. In this pathological process, the expression of iRhom2 is promoted to activate the TACE/NF-κB signaling pathway, leading to inflammatory responses. Furthermore, the deletion of iRhom2 blocks the TACE/NF-κB signaling pathway and reduces liver damage and fibrosis caused by alcohol. Additionally, the activation of the JNK/Nrf2/HO-1 signaling pathway caused by alcohol exposure was also noted in vitro and in vivo. In the same way, knockout or deleting iRhom2 blocked the JNK/Nrf2/HO-1 signaling pathway to regulate the oxidative stress. Therefore, we contend that iRhom2 is a key regulator that promotes inflammatory responses and regulates oxidative stress in alcoholic liver fibrosis lesions. We posit that iRhom2 is potentially a new therapeutic target for alcoholic liver fibrosis.  相似文献   

20.
Epidemiological data have demonstrated a significant association between the presence of type 2 diabetes mellitus (T2DM) and the development of colorectal cancer (CRC). Chronic hyperglycemia, insulin resistance, oxidative stress, and inflammation, the processes inherent to T2DM, also play active roles in the onset and progression of CRC. Recently, small dense low-density lipoprotein (LDL) particles, a typical characteristic of diabetic dyslipidemia, emerged as another possible underlying link between T2DM and CRC. Growing evidence suggests that antidiabetic medications may have beneficial effects in CRC prevention. According to findings from a limited number of preclinical and clinical studies, glucagon-like peptide-1 receptor agonists (GLP-1RAs) could be a promising strategy in reducing the incidence of CRC in patients with diabetes. However, available findings are inconclusive, and further studies are required. In this review, novel evidence on molecular mechanisms linking T2DM with CRC development, progression, and survival will be discussed. In addition, the potential role of GLP-1RAs therapies in CRC prevention will also be evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号