首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We propose an interactive method for decision making under uncertainty, where uncertainty is related to the lack of understanding about consequences of actions. Such situations are typical, for example, in design problems, where a decision maker has to make a decision about a design at a certain moment of time even though the actual consequences of this decision can be possibly seen only many years later. To overcome the difficulty of predicting future events when no probabilities of events are available, our method utilizes groupings of objectives or scenarios to capture different types of future events. Each scenario is modeled as a multiobjective optimization problem to represent different and conflicting objectives associated with the scenarios. We utilize the interactive classification-based multiobjective optimization method NIMBUS for assessing the relative optimality of the current solution in different scenarios. This information can be utilized when considering the next step of the overall solution process. Decision making is performed by giving special attention to individual scenarios. We demonstrate our method with an example in portfolio optimization.  相似文献   

2.
The application of neural networks to optimization problems has been an active research area since the early 1980s. Unconstrained optimization, constrained optimization and combinatorial optimization problems have been solved using neural networks. This study presents a new approach using Hopfield neural networks (HNNs) for solving the dual response system (DRS) problems. The major aim of the proposed method is to produce a string of solutions, rather than a ‘one‐shot’ optimum solution, to make the trade‐offs available between the mean and standard deviation responses. This gives more flexibility to the decision‐maker in exploring alternative solutions. The proposed method has been tested on two examples. The HNN results are very close to those obtained by using the NIMBUS (Nondifferentiable Interactive Multiobjective Bundle‐based Optimization System) algorithm. Choosing an appropriate solution method for a certain multi‐objective optimization problem is not easy, as has been made abundantly clear. Unlike the NIMBUS method, the HNN approach does not set any specific assumptions on the behaviour or the preference structure of the decision maker. As a result, the proposed method will still work and generate alternative solutions whether or not the decision maker has enough time and capabilities for co‐operation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
We describe a new interactive learning-oriented method called Pareto navigator for nonlinear multiobjective optimization. In the method, first a polyhedral approximation of the Pareto optimal set is formed in the objective function space using a relatively small set of Pareto optimal solutions representing the Pareto optimal set. Then the decision maker can navigate around the polyhedral approximation and direct the search for promising regions where the most preferred solution could be located. In this way, the decision maker can learn about the interdependencies between the conflicting objectives and possibly adjust one’s preferences. Once an interesting region has been identified, the polyhedral approximation can be made more accurate in that region or the decision maker can ask for the closest counterpart in the actual Pareto optimal set. If desired, (s)he can continue with another interactive method from the solution obtained. Pareto navigator can be seen as a nonlinear extension of the linear Pareto race method. After the representative set of Pareto optimal solutions has been generated, Pareto navigator is computationally efficient because the computations are performed in the polyhedral approximation and for that reason function evaluations of the actual objective functions are not needed. Thus, the method is well suited especially for problems with computationally costly functions. Furthermore, thanks to the visualization technique used, the method is applicable also for problems with three or more objective functions, and in fact it is best suited for such problems. After introducing the method in more detail, we illustrate it and the underlying ideas with an example.  相似文献   

4.
A novel immune algorithm is suggested for finding Pareto-optimal solutions to multiobjective optimization problems based on opt-aiNET, the artificial immune system algorithm for multi-modal optimization. In the proposed algorithm, a randomly weighted sum of multiple objectives is used as a fitness function, and a local search algorithm is incorporated to facilitate the exploitation of the search space. Specifically, a new truncation algorithm with similar individuals (TASI) is proposed to preserve the diversity of the population. Also, a new selection operator is presented to create the new population based on TASI. Simulation results on seven standard problems (ZDT2, ZDT6, DEB, VNT, BNH, OSY and KIT) show that the proposed algorithm is able to find a much better spread of solutions and better convergence near the true Pareto-optimal front compared to the vector immune algorithm and the elitist non-dominated sorting genetic system.  相似文献   

5.
Stochastic multiobjective programming models are highly complex problems, due to the presence of random parameters, together with several conflicting criteria that have to be optimized simultaneously. Even the widely used concept of efficiency has to be redefined for these problems. The use of interactive procedures can somehow ease this complexity, allowing the decision maker to learn about the problem itself, and to look for his most preferred solution. Reference point schemes can be adapted to stochastic problem, by asking the decision maker to provide, not only desirable levels for the objectives, but also the desired probability to achieve these values. In this paper, we analyze the different kinds of achievement scalarizing functions that can be used in this environment, and we study the efficiency (in the stochastic sense) of the different solutions obtained. As a result, a synchronous interactive method is proposed for a class of stochastic multiobjective problems, where only the objective functions are random. Several solutions can be generated by this new method, making use of the same preferential information, using the different achievement scalarizing functions. The preferential information (levels and probabilities for the objectives) is incorporated into the achievement scalarizing functions in a novel way to generate the new solutions. The special case of linear normal problems is addressed separately. The performance of the algorithm is illustrated with a numerical example.  相似文献   

6.
This article proposes a new multi-objective evolutionary algorithm, called neighbourhood exploring evolution strategy (NEES). This approach incorporates the idea of neighbourhood exploration together with other techniques commonly used in the multi-objective evolutionary optimization literature (namely, non-dominated sorting and diversity preservation mechanisms). The main idea of the proposed approach was derived from a single-objective evolutionary algorithm, called the line-up competition algorithm (LCA), and it consists of assigning neighbourhoods of different sizes to different solutions. Within each neighbourhood, new solutions are generated using a (1+λ)-ES (evolution strategy). This scheme naturally balances the effect of local search (which is performed by the neighbourhood exploration mechanism) with that of the global search performed by the algorithm, and gradually impels the population to progress towards the true Pareto-optimal front of the problem to explore the extent of that front. Three versions of the proposal are studied: a (1+1)-NEES, a (1+2)-NEES and a (1+4)-NEES. Such approaches are validated on a set of standard test problems reported in the specialized literature. Simulation results indicate that, for continuous numerical optimization problems, the proposal (particularly the (1+1)-NEES) is competitive with respect to NSGA-II, which is an algorithm representative of the state-of-the-art in evolutionary multi-objective optimization. Moreover, all the versions of NEES improve on the results of NSGA-II when dealing with a discrete optimization problem. Although preliminary, such results might indicate a potential application area in which the proposed approach could be particularly useful.  相似文献   

7.
In the past few years, multi-objective optimization algorithms have been extensively applied in several fields including engineering design problems. A major reason is the advancement of evolutionary multi-objective optimization (EMO) algorithms that are able to find a set of non-dominated points spread on the respective Pareto-optimal front in a single simulation. Besides just finding a set of Pareto-optimal solutions, one is often interested in capturing knowledge about the variation of variable values over the Pareto-optimal front. Recent innovization approaches for knowledge discovery from Pareto-optimal solutions remain as a major activity in this direction. In this article, a different data-fitting approach for continuous parameterization of the Pareto-optimal front is presented. Cubic B-spline basis functions are used for fitting the data returned by an EMO procedure in a continuous variable space. No prior knowledge about the order in the data is assumed. An automatic procedure for detecting gaps in the Pareto-optimal front is also implemented. The algorithm takes points returned by the EMO as input and returns the control points of the B-spline manifold representing the Pareto-optimal set. Results for several standard and engineering, bi-objective and tri-objective optimization problems demonstrate the usefulness of the proposed procedure.  相似文献   

8.
Interactive methods are useful and realistic multiobjective optimization techniques and, thus, many such methods exist. However, they have two important drawbacks when using them in real applications. Firstly, the question of which method should be chosen is not trivial. Secondly, there are rather few practical implementations of the methods. We introduce a general formulation that can accommodate several interactive methods. This provides a comfortable implementation framework for a general interactive system. Besides, this implementation allows the decision maker to choose how to give preference information to the system, and enables changing it anytime during the solution process. This change-of-method option provides a very flexible framework for the decision maker.  相似文献   

9.
Reliability-based and risk-informed design, operation, maintenance and regulation lead to multiobjective (multicriteria) optimization problems. In this context, the Pareto Front and Set found in a multiobjective optimality search provide a family of solutions among which the decision maker has to look for the best choice according to his or her preferences. Efficient visualization techniques for Pareto Front and Set analyses are needed for helping decision makers in the selection task.In this paper, we consider the multiobjective optimization of system redundancy allocation and use the recently introduced Level Diagrams technique for graphically representing the resulting Pareto Front and Set. Each objective and decision variable is represented on separate diagrams where the points of the Pareto Front and Set are positioned according to their proximity to ideally optimal points, as measured by a metric of normalized objective values. All diagrams are synchronized across all objectives and decision variables. On the basis of the analysis of the Level Diagrams, we introduce a procedure for reducing the number of solutions in the Pareto Front; from the reduced set of solutions, the decision maker can more easily identify his or her preferred solution.  相似文献   

10.
For multiple-objective optimization problems, a common solution methodology is to determine a Pareto optimal set. Unfortunately, these sets are often large and can become difficult to comprehend and consider. Two methods are presented as practical approaches to reduce the size of the Pareto optimal set for multiple-objective system reliability design problems. The first method is a pseudo-ranking scheme that helps the decision maker select solutions that reflect his/her objective function priorities. In the second approach, we used data mining clustering techniques to group the data by using the k-means algorithm to find clusters of similar solutions. This provides the decision maker with just k general solutions to choose from. With this second method, from the clustered Pareto optimal set, we attempted to find solutions which are likely to be more relevant to the decision maker. These are solutions where a small improvement in one objective would lead to a large deterioration in at least one other objective. To demonstrate how these methods work, the well-known redundancy allocation problem was solved as a multiple objective problem by using the NSGA genetic algorithm to initially find the Pareto optimal solutions, and then, the two proposed methods are applied to prune the Pareto set.  相似文献   

11.
The current manufacturing environment has changed from traditional single-plant to multi-site supply chain where multiple plants are serving customer demands. In this article, a tactical multi-objective, multi-period, multi-product, multi-site supply-chain planning problem is proposed. A corresponding optimization model aiming to simultaneously minimize the total cost, maximize product quality and maximize the customer satisfaction demand level is developed. The proposed solution approach yields to a front of Pareto-optimal solutions that represents the trade-offs among the different objectives. Subsequently, the analytic hierarchy process method is applied to select the best Pareto-optimal solution according to the preferences of the decision maker. The robustness of the solutions and the proposed approach are discussed based on a sensitivity analysis and an application to a real case from the textile and apparel industry.  相似文献   

12.
In this article a method for including a priori preferences of decision makers into multicriteria optimization problems is presented. A set of Pareto-optimal solutions is determined via desirability functions of the objectives which reveal experts’ preferences regarding different objective regions. An application to noisy objective functions is not straightforward but very relevant for practical applications. Two approaches are introduced in order to handle the respective uncertainties by means of the proposed preference-based Pareto optimization. By applying the methods to the original and uncertain Binh problem and a noisy single cut turning cost optimization problem, these approaches prove to be very effective in focusing on different parts of the Pareto front of the ori-ginal problem in both certain and noisy environments.  相似文献   

13.
When solving multiobjective optimization problems, there is typically a decision maker (DM) who is responsible for determining the most preferred Pareto optimal solution based on his preferences. To gain confidence that the decisions to be made are the right ones for the DM, it is important to understand the trade-offs related to different Pareto optimal solutions. We first propose a trade-off analysis approach that can be connected to various multiobjective optimization methods utilizing a certain type of scalarization to produce Pareto optimal solutions. With this approach, the DM can conveniently learn about local trade-offs between the conflicting objectives and judge whether they are acceptable. The approach is based on an idea where the DM is able to make small changes in the components of a selected Pareto optimal objective vector. The resulting vector is treated as a reference point which is then projected to the tangent hyperplane of the Pareto optimal set located at the Pareto optimal solution selected. The obtained approximate Pareto optimal solutions can be used to study trade-off information. The approach is especially useful when trade-off analysis must be carried out without increasing computation workload. We demonstrate the usage of the approach through an academic example problem.  相似文献   

14.
Real-world optimisation problems usually involve some conflicting objectives and a number of constraints. In such cases, finding a feasible, Pareto-optimal solution poses a demanding challenge. In reality, constraints bear different importance levels to these conflicting objectives. If some constraints are relaxed within an acceptable degree, quality infeasible solutions could be found on the boundary from the infeasible side of the searching region. This paper formulates an energy distribution problem arising from a real-world iron and steel production as a multiobjective optimisation problem. During the course of the optimisation search, this paper attempts to handle certain constraints in a soft manner to find solutions with good balance among objective and constraints violation. Based on the analysis of constraints from the real-world perspective, different tolerance values are defined. The proposed constraint violation degree-based soft handling approach is incorporated into the advanced version of non-dominated sorting genetic algorithm framework, as a case study, to examine the efficiency of the proposed soft constraint handling approach for a real-world energy distribution problem. The proposed approach is also implemented in different ways of constraint handling and tested on some benchmark functions to further demonstrate the performance of soft constraint handling for multiobjective optimisation problems.  相似文献   

15.
When attempting to optimize the design of engineered systems, the analyst is frequently faced with the demand of achieving several targets (e.g. low costs, high revenues, high reliability, low accident risks), some of which may very well be in conflict. At the same time, several requirements (e.g. maximum allowable weight, volume etc.) should also be satisfied. This kind of problem is usually tackled by focusing the optimization on a single objective which may be a weighed combination of some of the targets of the design problem and imposing some constraints to satisfy the other targets and requirements. This approach, however, introduces a strong arbitrariness in the definition of the weights and constraints levels and a criticizable homogenization of physically different targets, usually all translated in monetary terms.The purpose of this paper is to present an approach to optimization in which every target is considered as a separate objective to be optimized. For an efficient search through the solution space we use a multiobjective genetic algorithm which allows us to identify a set of Pareto optimal solutions providing the decision maker with the complete spectrum of optimal solutions with respect to the various targets. Based on this information, the decision maker can select the best compromise among these objectives, without a priori introducing arbitrary weights.  相似文献   

16.
Multi-objective scheduling problems: Determination of pruned Pareto sets   总被引:1,自引:0,他引:1  
There are often multiple competing objectives for industrial scheduling and production planning problems. Two practical methods are presented to efficiently identify promising solutions from among a Pareto optimal set for multi-objective scheduling problems. Generally, multi-objective optimization problems can be solved by combining the objectives into a single objective using equivalent cost conversions, utility theory, etc., or by determination of a Pareto optimal set. Pareto optimal sets or representative subsets can be found by using a multi-objective genetic algorithm or by other means. Then, in practice, the decision maker ultimately has to select one solution from this set for system implementation. However, the Pareto optimal set is often large and cumbersome, making the post-Pareto analysis phase potentially difficult, especially as the number of objectives increase. Our research involves the post Pareto analysis phase, and two methods are presented to filter the Pareto optimal set to determine a subset of promising or desirable solutions. The first method is pruning using non-numerical objective function ranking preferences. The second approach involves pruning by using data clustering. The k-means algorithm is used to find clusters of similar solutions in the Pareto optimal set. The clustered data allows the decision maker to have just k general solutions from which to choose. These methods are general, and they are demonstrated using two multi-objective problems involving the scheduling of the bottleneck operation of a printed wiring board manufacturing line and a more general scheduling problem.  相似文献   

17.
Determining the optimal heat treatment regimen and the required weight percentages for the chemical composites to obtain the desired mechanical properties of steel is a challenging problem for the steel industry. To tackle what is in essence an optimization problem, several neural network-based models, which were developed in the early stage of this research work, are used to predict the mechanical properties of steel such as the tensile strength (TS), the reduction of area (ROA), and the elongation. Because these predictive models are generally data driven, such predictions should be treated carefully. In this research work, evolutionary multiobjective (EMO) optimization algorithms are exploited not only to obtain the targeted mechanical properties but also to consider the reliability of the predictions. To facilitate the implementation of a broad range of single-objective and multi-objective algorithms, a versatile Windows 2000®-based application is developed. The obtained results from the single-objective and the multiobjective optimization algorithms are presented and compared, and it is shown that the EMO techniques can be effectively used to deal with such optimization problems.  相似文献   

18.
Reliability optimization using multiobjective ant colony system approaches   总被引:1,自引:0,他引:1  
The multiobjective ant colony system (ACS) meta-heuristic has been developed to provide solutions for the reliability optimization problem of series-parallel systems. This type of problems involves selection of components with multiple choices and redundancy levels that produce maximum benefits, and is subject to the cost and weight constraints at the system level. These are very common and realistic problems encountered in conceptual design of many engineering systems. It is becoming increasingly important to develop efficient solutions to these problems because many mechanical and electrical systems are becoming more complex, even as development schedules get shorter and reliability requirements become very stringent. The multiobjective ACS algorithm offers distinct advantages to these problems compared with alternative optimization methods, and can be applied to a more diverse problem domain with respect to the type or size of the problems. Through the combination of probabilistic search, multiobjective formulation of local moves and the dynamic penalty method, the multiobjective ACSRAP, allows us to obtain an optimal design solution very frequently and more quickly than with some other heuristic approaches. The proposed algorithm was successfully applied to an engineering design problem of gearbox with multiple stages.  相似文献   

19.
This paper presents a reference point-based interactive algorithm, which has been specifically designed to deal with stochastic multiobjective programming problems. This algorithm combines the classical information used in this kind of methods, i.e. values that the decision maker regards as desirable for each objective, with information about the probabilities the decision maker wishes to accept. This novel aspect allows the method to fully take into account the randomness of the final outcome throughout the whole solution process. These two pieces of information have been introduced in an adapted achievement-scalarizing function, which assures each solution obtained to be probability efficient.  相似文献   

20.
System reliability optimization is a key element for a competitive and safe industrial plant. This paper addresses the multiobjective system reliability optimization in the presence of fuzzy data. A framework solution approach is proposed and based on four steps: defuzzify the data into crisp values by the ranking function procedure, the defuzzified problems are solved by the non-sorting genetic algorithms II and III (NSGA-II and NSGA-III), the Pareto fronts are compared by the spacing method for selecting the best one, and then the best Pareto front is reduced by the clustering analysis for helping the decision maker. A case study presented in the literature as a mono-objective redundancy allocation problem with fuzzy data is investigated in the present paper as multiobjective redundancy allocation and reliability-redundancy allocation problems show the applicability of the approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号