首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 219 毫秒
1.
以环戊二烯为碳源,采用等离子体增强化学气相沉积法(PECVD)在Si单晶〈n100〉面上制备了类金刚石薄膜。采用FEI Tecnai F30型高分辨透射电镜(HRTEM)和LAMRAM HR 800型拉曼光谱仪对薄膜及磨屑的结构进行表征;利用MFTR4000摩擦磨损试验机、Hysitron Ti950型原位纳米力学测试系统考察薄膜的摩擦学及力学性能。结果表明: 所制备的金刚石薄膜具有富勒烯纳米团簇/非晶复合纳米结构,在磨屑中也出现了这种稳定的片层结构从而起到了良好的减摩作用;并且薄膜表现出优异的力学性能和摩擦学性能: 其硬度为26.8 GPa、弹性回复为85%、摩擦因数为0.01。由于这种特殊纳米结构的存在,使得薄膜的力学性能及摩擦学性能显著提高。  相似文献   

2.
氟含量对类金刚石薄膜结构及摩擦学性能的影响   总被引:1,自引:0,他引:1  
采用直流等离子体沉积的方法制备了具有不同氟含量的类金刚石薄膜。并利用多功能X射线光电子能谱仪(XPS)、拉曼光谱仪、纳米压痕仪、应力测试仪和摩擦磨损试验机等手段分析和研究了含氟类金刚石薄膜的结构、力学性能以及摩擦学性能,并利用场发射扫描电镜(SEM)观察了薄膜断面形貌。结果表明:所制备薄膜的力学性能和摩擦学性能均受到薄膜中氟含量的影响,当F含量(原子数分数)为5.92%时,薄膜显示了优异的力学性能及摩擦学性能,硬度值高达21GPa,压应力低至0.75GPa,摩擦因数为0.013,磨损率为9×10-19 m3/(N.m)。  相似文献   

3.
利用离子束辅助沉积技术和低温离子渗硫技术制备了二硫化钨/钨掺杂类金刚石(WS2/W-DLC)复合薄膜。采用扫描电子显微镜(SEM)、拉曼光谱仪(Raman)、透射电子显微镜(TEM)、纳米硬度仪(Nano-indenter)和多功能摩擦磨损试验机(UMT)考察了薄膜的微观结构与摩擦学性能。结果表明:制备的薄膜在大气环境下表现出优异的力学性能和超低摩擦的性能,该复合薄膜中,硬质强化相纳米碳化物WC1-x和软质润滑相过渡族金属硫化物WS2、Fe S均匀镶嵌于类金刚石基体内形成复合结构,复合结构是薄膜表现出优异性能的主要原因。  相似文献   

4.
纳米多层膜因具有优异的力学性能与抗摩擦磨损性能使其在摩擦学领域具有重要的应用价值。采用磁控溅射沉积法制备了Al、AlN单层薄膜与Al/AlN纳米多层膜,探讨了纳米多层化对薄膜的力学性能和摩擦学性能的影响。采用纳米压痕仪和摩擦磨损试验机测量评价薄膜的纳米硬度和摩擦学性能。结果表明:Al/AlN纳米多层膜具有良好的周期调制结构,多层膜中的大量界面能显著提高薄膜的力学性能与摩擦学性能。多层膜的硬度为8.8GPa,高于采用混合法则计算出的硬度值6.6GPa;多层膜具有软质Al层和硬质AlN层的交替结构,在摩擦过程中,硬质AlN层可以起到良好的承载作用,软质层可以起到良好的减摩作用。相对于Al单层薄膜或AlN单层薄膜,Al/AlN纳米多层膜具有较低的摩擦因数(0.15)和优异的抗磨损性能。  相似文献   

5.
采用离子束沉积技术在医用Ti6Al4V合金表面制备类金刚石薄膜(DLC),利用原子力显微镜、Raman光谱、X射线光电子能谱(XPS)及UMT-2摩擦磨损试验机对薄膜的形貌、结构、摩擦学性能进行表征。采用动电位极化对涂层前后基底的耐腐蚀性能进行测试。结果表明:制备薄膜为类金刚石碳结构,基底偏压对薄膜形貌、结构有较大影响;偏压为-100V时制备的薄膜表面粗糙度低(6.5nm),sp3/sp2比值高,摩擦学性能优异;经DLC膜保护的合金基底耐腐蚀性能获得明显改善。  相似文献   

6.
利用多弧离子镀技术在316L不锈钢和单晶硅上制备了均质和梯度Cr CN薄膜,通过X射线衍射仪(XRD)、扫描电镜(SEM)、X射线光电子能谱仪(XPS)、纳米压痕仪、273A电化学工作站、Revetest划痕测试系统和多功能摩擦磨损试验机等对薄膜的微观结构、力学性能、耐腐蚀性能和摩擦学性能进行表征。结果表明:较之于均质CrCN薄膜,梯度CrCN薄膜平均晶粒较小,Cr_7C_3(421)晶面的结晶度高,力学性能较好;在海水环境下,梯度CrCN薄膜在摩擦过程中对裂纹的萌生及扩展有较强的抑制作用,能有效抵制海水渗透,表现出良好的耐腐蚀性能;与WC摩擦配副对磨时平均摩擦系数与磨损率均较低,磨痕形貌光洁,表现出良好的摩擦学性能。  相似文献   

7.
目的 研究氧气流量对多弧离子镀制备的氧化铬薄膜结构、力学性能以及摩擦学性能的影响.方法 采用多弧离子镀技术在不同氧气流量下(70、90、110、130、150 mL/min)在Inconel718高温合金表面制备了氧化铬薄膜.利用扫描电子显微镜、冷场发射扫描电镜分别分析薄膜的表面形貌与断面形貌.利用X射线衍射仪和Raman光谱仪对薄膜的物相组成及晶体结构进行分析;利用划痕仪、纳米压痕仪评价薄膜的力学性能.利用高温球盘摩擦磨损试验机测试薄膜的摩擦学性能,并利用光学显微镜及三维表面轮廓仪观察磨痕的形貌并测量摩擦后的磨损体积.结果 随着氧气流量的增加,薄膜的沉积速率先增大后减小,表面逐渐变得致密光滑,除110 mL/min氧气流量下的截面形貌是无序紧密堆积的纳米级晶体颗粒外,其他流量下制备的薄膜截面形貌均为柱状晶.薄膜的主要物相组成由Cr2O2.4逐渐转变为Cr2O3,且薄膜的晶化程度增加.薄膜与基底的粘结强度逐渐降低,薄膜的硬度和弹性模量先升高后降低.在110 mL/min氧气流量下沉积的氧化铬薄膜表现出较好的宽温域摩擦学性能,在室温下(25℃)的摩擦因数较高,约为0.49,高温下(400、600、800℃)的摩擦因数为0.27~0.30.其他氧气流量下制备的氧化铬薄膜的常温摩擦学性能均较差.结论 氧气流量对沉积的薄膜的表面形貌、断面形貌、物相组成以及力学性能有很大的影响.110 mL/min氧气流量下制备的氧化铬薄膜不仅具有较好的力学性能,而且表现出了较为优异的宽温域摩擦学性能.  相似文献   

8.
利用等离子体增强化学气相沉积法在Si(100)基体上制备不同H2/CH4流量比下的类金刚石薄膜,采用拉曼光谱、红外光谱、扫描电子显微镜(SEM)、纳米力学性能综合测试仪以及摩擦磨损试验机对薄膜的组织结构、力学以及摩擦学性能进行了分析。结果表明:该条件下制备的薄膜具有典型的类金刚石结构且膜中氢含量较高,薄膜表面光滑,膜层致密且均匀,薄膜的硬度及与基底的附着力均随着H2/CH4流量比的增加而降低。薄膜在大气环境下具有优异的摩擦学性能,在相同的载荷及转速条件下,H2/CH4流量比对薄膜的摩擦因数影响不大。当载荷为5N时,随着转速的增加,摩擦因数降低;而载荷为10N时,摩擦因数约为0.05,转速对其影响较小。薄膜的磨损率在10-8~10-7 mm3/Nm之间变化,且随H2/CH4流量比的增加而增大。  相似文献   

9.
利用热丝化学气相沉积技术在碳化硅基底上制备微米金刚石薄膜、纳米金刚石薄膜和金刚石–石墨复合薄膜,采用扫描电子显微镜、原子力显微镜和拉曼光谱仪对不同金刚石薄膜的表面形貌和微观结构进行表征,通过摩擦磨损实验测试金刚石薄膜的摩擦系数并计算其磨损率,对比研究不同种类金刚石薄膜的摩擦磨损性能。结果表明:金刚石–石墨复合薄膜具有较好的摩擦磨损性能,薄膜表面粗糙度为53.8 nm,摩擦系数为0.040,和纳米金刚石薄膜(0.037)相当;金刚石–石墨复合薄膜的磨损率最低,为2.07×10?7 mm3·N?1·m?1。在相同实验条件下,同碳化硅基底的磨损率(9.89×10?5 mm3·N?1·m?1)和摩擦系数(0.580)相比,所有金刚石薄膜的磨损率和摩擦系数均有明显提升,说明在SiC基体表面沉积金刚石薄膜能够显著提高碳化硅材料在摩擦学领域的使役性能。   相似文献   

10.
CrSiN纳米复合薄膜的摩擦学性能   总被引:1,自引:0,他引:1  
采用中频非平衡反应磁控溅射技术在单晶硅P(111)基材上制备了CrSiN纳米复合薄膜。利用X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)、Kevex能谱仪(EDX)、高分辨率透射电子显微镜(HRTEM)和纳米压痕仪对薄膜的相结构、化学成分组成和力学性能进行了测试分析。利用球-盘式摩擦磨损试验机(UMT-2)考察了薄膜和GCr15钢球对磨的摩擦学性能并采用扫描电镜(SEM)观察磨痕形貌。结果表明:CrN薄膜中Si元素的掺杂改变了薄膜晶体结构,所制备的CrSiN复合薄膜为多相复合结构,即nc-CrN/aSi3N4所组成的纳米晶/非晶复合结构。CrSiN纳米复合薄膜的力学性能均优于CrN薄膜,其硬度均高于CrN薄膜的硬度,其中Si原子数分数为12.6%时薄膜的硬度达到最大,对应纳米晶/非晶复合强化。CrSiN纳米复合薄膜的摩擦因数低于CrN薄膜,具有很好的抗磨损性能,并具有一定的润滑作用。  相似文献   

11.
类金刚石碳薄膜具有良好的润滑性能,摩擦界面的磨屑或摩擦层结构影响其摩擦行为。掺杂的类金刚石碳薄膜是一个重要类别,其特征在于在非晶碳结构中结合不同的元素,改善其力学、摩擦学、电化学等性能。报告了不同非金属及金属元素的掺杂对类金刚石碳薄膜性能的影响,讨论了摩擦学性能随其化学组成和微观结构的变化,尽可能获得其间的一般趋势或相关性,并对元素掺杂类金刚石薄膜的发展进行了展望。  相似文献   

12.
纳米金刚石薄膜研究进展   总被引:7,自引:2,他引:7  
本文对纳米金刚石薄膜的研究现状和发展趋势进行了综合评述,从纳米金刚石薄膜的沉积原理和工艺以及纳米效应表征等方面分析了国内外最新研究成果,比较了常规和纳米金刚石薄膜不同沉积工艺和形核生长机理,对纳米金刚石薄膜的硬度、内应力、摩擦特性等机械性能也作了概述,在此基础上,提出在常规金刚石薄膜基础上沉积纳米金刚石薄膜组成复合涂层的新方法。  相似文献   

13.
目的 研究反应溅射石墨制备非晶碳过程中乙炔流量变化对非晶碳微观结构、力学性能及摩擦学性能的影响规律。方法 通过在乙炔气氛中反应溅射石墨靶,调控乙炔流量,制备不同结构的非晶碳膜层,采用X射线光电子能谱仪、激光共聚焦拉曼光谱仪分析膜层的微观结构,采用纳米压痕仪表征膜层的力学性能,采用球盘式摩擦磨损试验机、白光干涉仪和光学显微镜表征膜层摩擦学性能。结果 通过反应溅射法制备了致密均匀的非晶碳,分析发现,所有薄膜表层均含有一定量O元素(原子数分数为6.36%~13.86%)。经Ar+刻蚀后,大部分膜层的O含量可降至1%以下;随着乙炔流量的增加,膜层的硬度(H)、弹性模量(E)和H3/E2均呈先增后减的趋势,在乙炔流量为10 cm3/min时膜层的硬度和弹性模量达到最大值,分别为27.93、233.55 GPa;摩擦学性能测试结果显示,膜层的平均摩擦因数在0.09~0.11之间,在启动阶段摩擦因数随着氢元素(H)含量的增加呈下降趋势,5 cm3/min试样的膜层的耐磨性最高、磨损量最小,其磨损量为0.72× 10−16 m3/(N.m)。结论 通过调节反应溅射石墨过程中乙炔的流量,可调控非晶碳中sp3/sp2、H含量,进而达到调控非晶碳力学性能、摩擦学性能的目的。  相似文献   

14.
金刚石膜与硬质合金刀片间界面Co相的研究   总被引:5,自引:0,他引:5  
匡同春  白晓军 《金属学报》1999,35(6):643-647
采用SEM和TEM对CVD金刚石膜/YG8硬质合金刀片的界面结合起来,界面Co相进行了研究,结果表明CVD金刚石膜与硬质合金刀片的界面结合类型主要机械结合,界面除了石墨碳外,局部区域还可观察到Co粒子,Co粒子上的生长物是微晶石墨和六方金刚石的混合物,且Co粒子与其上的生长物之间存在明显的界面。  相似文献   

15.
高熵碳化物薄膜的脆性限制了其在高承载、长周期服役条件下的应用。精细设计的纳米复合结构可以在不损失薄膜强度前提下显著提高薄膜的韧性。采用高功率脉冲磁控溅射技术制备以非晶为基体连续相,以碳化物陶瓷相为分散相的非晶-晶体的高熵碳化物(CuNiTiNbCr)C_(x)薄膜,研究不同C_(2)H_(2)气体流量(F_(C))对薄膜成分、结构、力学性能和摩擦学性能的影响。采用能谱仪、扫描电子显微镜、X射线衍射仪、透射电子显微镜、X射线光电子能谱分析薄膜的成分、形貌、结构及各元素的化学状态,进一步采用纳米压痕以及球-盘式摩擦磨损试验机对薄膜的硬度、模量和摩擦磨损性能进行表征。结果表明,随着乙炔气体流量的增加,薄膜中碳含量逐渐增加,结构从非晶转变为非晶-晶体的纳米复合结构。纳米复合结构薄膜的硬度随着乙炔流量的增加逐渐增加,这是因为薄膜中生成大量碳化物陶瓷相,薄膜硬度最高为20 GPa。纳米复合薄膜呈现优异的摩擦学性能,在F_(C)=3 mL/min时,薄膜的摩擦性能达到最优,其磨损量为2.9×10^(-6)mm^(3)/Nm。综上,采用高功率脉冲磁控溅射技术可以精细调控薄膜结构,制备出强韧一体化、耐磨减摩的纳米复合结构(CuNiTiNbCr)C_(x)薄膜。  相似文献   

16.
目的 解决316L不锈钢在苛刻海洋环境中易磨损、易腐蚀的问题。方法 采用中频磁控溅射技术在316L不锈钢上沉积了Ta/TaN/TaCN/Ta-DLC薄膜。通过扫描电子显微镜、拉曼光谱、X射线光电子能谱、X射线衍射、纳米压痕、往复摩擦磨损试验和电化学测试等手段,重点研究了DLC膜层中Ta元素掺杂含量对薄膜结构、组成成分、力学性能、摩擦学性能和耐腐蚀性能的影响规律。结果 随着Ta元素含量(原子数分数)从2.04%增到4.16%,薄膜中的sp3键含量呈现先升高后降低的趋势,当Ta原子数分数为3.60%时,薄膜中sp3键含量最高,且薄膜的硬度及弹性模量达到最大,分别为7.01 GPa和157.87 GPa。随着Ta元素含量的增加,薄膜的平均摩擦因数逐渐减小,在4.16%(原子数分数)时达到最小0.21。Ta元素含量对薄膜的结合力影响较小,且所有薄膜结合力总体在10 N左右。当Ta原子数分数为3.60%时,薄膜的腐蚀电流密度及钝化电流密度最小,分别为0.006 μA/cm2和0.63 μA/cm2,比其他薄膜的低1~2个数量级,并且薄膜电阻及电荷转移电阻最大,展现出最为优异的耐腐蚀性能。结论 Ta元素的掺杂提高了薄膜的耐摩擦性能,且适当的Ta元素掺杂能够提高Ta/TaN/TaCN/Ta-DLC薄膜的耐磨耐蚀性能。  相似文献   

17.
PVD涂层技术制备类金刚石薄膜及性能研究综述   总被引:1,自引:1,他引:0  
吴雁  李艳峰  张而耕  赵杰 《表面技术》2016,45(8):115-123
介绍了采用物理气相沉积(PVD)技术制备类金刚石涂层的方法,进而论述了涂层的摩擦磨损和结合力等性能的研究现状和发展前景。分析并综述了类金刚石涂层的技术发展,以及制备类金刚石薄膜的方法和影响其性能的多种要素。表面涂有类金刚石薄膜的工件具有较高的硬度、良好的热传导率、极低的摩擦系数、优异的电绝缘性能等。类金刚石薄膜(DLC Films)是近年来兴起的一种以sp3和sp2键的形式结合生成的亚稳态材料,因其优异的减摩和抗磨性能,在摩擦学领域获得了广泛应用,是一种与金刚石涂层性能相似的新型薄膜材料。DLC涂层的性能研究大多集中在它的摩擦学特性和结合力性能,并且作为优质的涂层材料已被广泛应用于汽车、模具、刀具等领域。  相似文献   

18.
不同掺杂对类金刚石薄膜的影响   总被引:1,自引:1,他引:0  
目的研究单掺Si和共掺Ag、Si对类金刚石薄膜的结构、摩擦学性能和耐腐蚀性能的影响。方法以高纯石墨靶、石墨与金属复合靶、Si靶作为靶材,采用射频增强磁控溅射技术制备不同掺杂种类的薄膜。通过XPS、拉曼光谱仪对薄膜的化学组成和结构进行分析,通过纳米压痕仪、摩擦磨损试验机、电化学工作站等,对薄膜的力学性能、摩擦学性能及耐腐蚀性能进行了系统研究。结果 Si元素单掺DLC会引起薄膜中sp~3C含量增加。Ag、Si共掺DLC后,由于Ag以金属相分布在薄膜中,并促进sp~2相的形成,导致sp~3C含量降低。掺杂元素后的DLC薄膜,硬度下降,但韧性提高,其中Ag、Si共掺的DLC薄膜的弹性恢复系数达到79%。此外,Ag、Si共掺DLC薄膜在多种气氛(Ar、O_2、N_2)中都具有优异的摩擦学性能,磨损寿命均超过30 min,其中在N_2气中的摩擦系数最低(0.1),并在NaCl溶液中的腐蚀电流密度比304不锈钢基体降低了近2个数量级,具有良好的耐腐蚀性。结论 Si与Ag共掺DLC薄膜较Si单掺薄膜具有更好的摩擦环境适应性和耐腐蚀性能。  相似文献   

19.
Microwave plasma enhanced chemical vapor deposition (MW-PECVD) is considered as one of the most successful growth techniques in recent diamond and crystalline carbon nitride investigations. In this study, we tried to synthesize crystalline carbon nitride film using MW-PECVD by gradually increasing the content of nitrogen into H2/CH4 gas mixture. Well-faceted crystalline diamond films could be synthesized with a H2/CH4 gas ratio of 198:2. With the gradual increase of nitrogen content up to 3% in the gas mixture diamond film quality deteriorates seriously, and the morphological crystal size and growth rate of diamond coatings decreased significantly. With the nitrogen gas content increased to approximately 6–22%, a lot of separated round diamond or diamond-like carbon particles formed on the surface rather than a continuous film. Only with the nitrogen content increased above 72%, could some tiny crystals with a type of hexagonal facet form on the silicon surface, together with many large, round diamond particles. With the further increase of nitrogen gas content above 90%, many large, well-faceted hexagonal crystals formed on Si surface. However, XRD, energy dispersive X-ray spectrometry, X-ray photoelectron spectroscopy and nano-indentation analysis indicated that these crystals were actually silicon carbonitride (Si–C–N) with a crystalline structure of Si3N4 modified with the introduction of carbon atoms, rather than carbonitride as expected and regarded.  相似文献   

20.
Graphite-like amorphous carbon film was fabricated by unbalanced magnetron sputtering technique.Raman spectroscopy,atomic force microscopy(AFM)and tribometer were subsequently used to investigate the microstructure and tribological properties of the resultant film.It is found that the deposited carbon film is dominated by sp 2 sites,and the intensity ratio of the D and G peaks is as high as 4.0,which is one order of magnitude larger than that of diamond-like carbon films with high sp 3 content,indicating a more graphite-like structure.However,the as-deposited carbon film exhibits moderately high hardness(13.7 GPa),low internal stress(0.38 GPa)and superior tribological properties with high load bearing capacity(Hertz contact stress about 3.2 GPa)and low wear rate(2.73×10-10 cm3/N.m)in ambient atmosphere.Although it displays a poor wear resistance in water lubricated condition,a superior wear resistance is achieved in oil lubricated condition.Its inherent physical property,the formation of transfer layer and the friction induced chemical reactions may be commonly responsible for its tribological properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号