首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Binary mixtures of spheres were used to prepare a variety of two-dimensional structures ranging from ordered to disordered. The extent of particle order was influenced by the size ratio and the concentration of the bimodal constituents. If either the sizes or the concentrations were very different, the structures became phase separated into ordered regions of small spheres and ordered regions of large spheres. Disordered structures were produced when particles were present in equal concentrations and when sizes differed by about 30%. The sintering behavior of these two-dimensional structures was also examined. The domain boundaries in the ordered samples were found to develop into cracks during sintering if the domain size was large. In contrast the disordered structures sintered homogeneously, without the formation of large processing defects.  相似文献   

2.
Effect of Interface Structure on the Microstructural Evolution of Ceramics   总被引:4,自引:0,他引:4  
The interface atomic structure was proposed to have a critical effect on microstructure evolution during sintering of ceramic materials. In liquid-phase sintering, spherical grains show normal grain growth behavior without exception, while angular grains often grow abnormally. The coarsening process of spherical grains with a disordered or rough interface atomic structure is diffusion-controlled, because there is little energy barrier for atomic attachments. On the other hand, kink-generating sources such as screw dislocations or two-dimensional (2-D) nuclei are required for angular grains having an ordered or singular interface structure. Coarsening of angular grains based on a 2-D nucleation mechanism could explain the abnormal grain growth behavior. It was also proposed that a densification process is closely related to the interface atomic structure. Enhanced densification by carefully chosen additives during solid state sintering was explained in terms of the grain-boundary structural transition from an ordered to a disordered open structure.  相似文献   

3.
The discolouration of magnesium aluminate spinel caused by carbon contamination is a main drawback of fabricating transparent bodies by spark plasma sintering (SPS). In this study, a two-stage heating rate profile was used to produce transparent MgAl2O4 without using sintering aids by SPS at 1250°C. The effect of critical temperature (Tc), at which the heating rate is decreased, on transparency and carbon contamination was investigated: higher critical temperature resulted in higher contamination. Non-uniform densification indicated that fast heating results in a hot-zone formation in the centre of sintered pellets; the higher temperature of centre favoured reaction of graphite die with spinel and formation of disordered carbon structures in residual pores.  相似文献   

4.
The gelation, phase transformation, and densification of a colloidal monolithic gel made from γ-Al2O3 fume powder are investigated. Among the six gelation agents that we use, formamide and urea are quick in causing gelation and easy to burn off. The densification rate of this gel decreases rapidly after the γ-to-α phase transformation. TiO2 is an effective sintering aid to overcome this bottleneck of densification because (1) it enhances the phase transformation rate so that the sintering of α-alumina occurs at a lower temperature, and (2) it promotes sintering rates at the initial and intermediate stages after phase transformation. On the other hand, MgO has an inappreciable effect on gel sintering. The effect of MgO at the final sintering stage is obstructed by this densification barrier after transformation. The titania-doped gel monoliths can be sintered to high density and fine microstructure at 1400°C.  相似文献   

5.
The densification behavior of Al2O3-MgO (0.1 wt%) has been studied in O2 and N2 atmospheres. Powder compacts have been sintered at 1600°C for 0.5 to 8 h. For some specimens the sintering atmosphere has been changed after 30 min of sintering. Irrespective of sintering atmosphere, sintered densities are approximately the same up to 99% relative density, implying that the capillary pressure effect dominates the atmosphere effect for most of the densification stage. During extended sintering treatment the density of specimens sintered in O2 becomes higher than that in N2. When the sintering atmosphere is changed from O2 to N2, enhanced densification results, and vice versa. Such an effect of sintering atmosphere is explained by the diffusiveness of gases entrapped in pores, as well as by oxygen potential differences inside and outside of the specimen. Differences in grain growth rate in various atmospheres are discussed on the basis of different densification rates.  相似文献   

6.
Densification of two-dimensional arrays of nearly monosized copper spheres was examined by hot-stage optical microscopy. The evolution of the particle arrangement was studied with computer methods, and statistical correlations were sought. Color graphics were found useful for displaying the spatial relationship of the local sintering parameters. It was found that differential densification was the major cause of rearrangement, rather than asymmetric neck formation.  相似文献   

7.
In this work, the sintering kinetics of pure UO2 and 0.5 wt.%MnO-doped UO2 was studied by a high-temperature dilatometer heated up to 1500°C. In addition, the sintering behavior of pure UO2 and 0.5 wt.%MnO-doped UO2 was studied by pressureless sintering technique. The results showed that MnO doping enhanced the grain boundary diffusion of UO2, which can effectively decrease the densification temperature and promote grain growth. The sintering temperature of UO2 was significantly reduced by about 200°C with the addition of 0.5 wt.%MnO. The microscopic morphology studies showed that there were still fine particles agglomerated, forming sintered spheres in the matrix even if no severe agglomeration and bimodal size distribution were observed in raw UO2 powder. The microstructure evolution of the sintered sphere and UO2 matrix during the densification process was studied by isothermal sintering. Finally, the present analyses indicated that the densification of UO2 matrix can be accelerated by adding MnO or increasing the sintering temperature, thus improving the densification inhomogeneity of UO2 matrix.  相似文献   

8.
Measurements are reported of the influences of temperature, green density, and pore network breakup on the densification, grain growth, and pore volume distribution in LiF compacts. As long as most of the pore volume remained open to the compact perimeter, the ratio of the rate of densification to the rate of grain growth was higher than that sometimes reported for copper or typical oxides. Plots of the logarithm of densification rates versus sintered density for LiF are approximately linear during intermediate-stage sintering, like those for some oxides. But the plots for LiF are unlike those of the oxides in that, for LiF, densification rates measured at different temperatures converge near the density at which half the pore volume is isolated from Hg intrusion. Calculations suggest that further densification of the LiF compacts is blocked because air trapped in isolated pores becomes sufficiently compressed to balance the sintering stress.  相似文献   

9.
For a few oxide ceramics, the use of an initial precoarsening step prior to densification (referred to as two-step sintering) has been observed to produce an improvement in the microstructural homogeneity during subsequent sintering. In the present work, the effect of a precoarsening step (50 h at 800°C) on the subsequent densification and microstructural evolution of high-quality alumina (Al2O3) powder compacts during constant-heating-rate sintering (4°C/min to 1450°C) was characterized in detail. The data were compared with those for similar compacts that were sintered conventionally (without the heat treatment step) and used to explore the mechanism of microstructural improvement during two-step sintering. After the precoarsening step, the average pore size was larger, but the distribution in pore sizes was narrower, than those for similar compacts that were sintered conventionally to 800°C. In subsequent sintering, the microstructure of the precoarsened compact evolved in a more homogeneous manner and, at the same density, the amount of closed porosity was lower for the compacts that were sintered by the two-step technique, in comparison to the conventional heating schedule. Furthermore, a measurably higher final density, a smaller average grain size, and a narrower distribution in grain sizes were achieved with the two-step technique. The microstructural refinement that was produced by the two-step sintering technique is explained in terms of a reduction in the effects of differential densification and the resulting delay of the pore channel pinch-off to higher density.  相似文献   

10.
Fully dense ceramics with retarded grain growth can be attained effectively at relatively low temperatures using a high-pressure sintering method. However, there is a paucity of in-depth research on the densification mechanism, grain growth process, grain boundary characterization, and residual stress. Using a strong, reliable die made from a carbon-fiber-reinforced carbon (Cf/C) composite for spark plasma sintering, two kinds of commercially pure α-Al2O3 powders, with average particle sizes of 220 nm and 3 μm, were sintered at relatively low temperatures and under high pressures of up to 200 MPa. The sintering densification temperature and the starting threshold temperature of grain growth (Tsg) were determined by the applied pressure and the surface energy relative to grain size, as they were both observed to increase with grain size and to decrease with applied pressure. Densification with limited grain coarsening occurred under an applied pressure of 200 MPa at 1050 °C for the 220 nm Al2O3 powder and 1400 °C for the 3 μm Al2O3 powder. The grain boundary energy, residual stress, and dislocation density of the ceramics sintered under high pressure and low temperature were higher than those of the samples sintered without additional pressure. Plastic deformation occurring at the contact area of the adjacent particles was proved to be the dominant mechanism for sintering under high pressure, and a mathematical model based on the plasticity mechanics and close packing of equal spheres was established. Based on the mathematical model, the predicted relative density of an Al2O3 compact can reach ~80 % via the plastic deformation mechanism, which fits well with experimental observations. The densification kinetics were investigated from the sintering parameters, i.e., the holding temperature, dwell time, and applied pressure. Diffusion, grain boundary sliding, and dislocation motion were assistant mechanisms in the final stage of sintering, as indicated by the stress exponent and the microstructural evolution. During the sintering of the 220 nm alumina at 1125 °C and 100 MPa, the deformation tends to increase defects and vacancies generation, both of which accelerate lattice diffusion and thus enhance grain growth.  相似文献   

11.
Conclusions We investigated the sintering of zirconium dioxide as a function of the activity of the starting material. It was shown that preliminary firing or stabilization of zirconium dioxide reduces its capacity for densification at temperatures of up to 1500°C, while stabilizing it directly during sintering intensifies this capacity. The prestabilized zirconia has the lowest sintering rate.Introducing monoclinic unfired zirconia into the prestabilized material intensifies sintering; the optimal addition is 30%.It is established that the zirconia is sintered by volume diffusion of vacancies.We investigated the sintering of active zirconia obtained by decomposing zirconium nitrate. The greatest degree of densification is obtained with a preliminary short heat processing of the nitrate at 400°C. Activation is connected with the formation of metastable tetragonal and cubic modifications with defect crystal lattices. Increasing the heat-process temperature of the nitrate or prolonging the soak at 400°C, leading to the formation of stable monoclinic ZrO2 with an ordered crystalline lattice, impairs sintering.Incorporating small additions of active ZrO2 in the industrial material, and providing rapid firing in an oxidizing atmosphere, greatly increases the degree of sintering. Introducing stabilizing additives intensifies sintering. The maximum densification is obtained by the formation of 60–70% solid solution. Further increase in these additions reduces the shrinkage and densification of the specimens.Translated from Ogneupory, No. 6, pp. 33–40, June, 1968.  相似文献   

12.
B4C-TiB2 composites with classical 75/25 vol ratio were sintered by pressureless sintering with and without gas pressure application in the final stage of densification, using a novel prototypal furnace. A small fraction of WC was introduced through high energy milling of the starting powders with WC-Co spheres. High energy milling facilitated the densification thanks to incorporation of WC impurities acting as sintering aid, and size reduction of the starting powders. Strength, stiffness and toughness of the ceramic densified at 2050 °C via gas pressure sintering were even better than hot pressed composites at 1900 °C. Depth of Penetration tests on plates with 3–5 mm thickness demonstrated that the gas pressure sintered material had a superior performance compared to the hot pressed one. This work also revealed that hardness was not the property spotting the best ballistic performance.  相似文献   

13.
Surfactant modified nano-origin ZnO–Bi2O3 varistor powder was prepared in presence of cetyltrimethyl ammonium bromide (CTAB) surfactant through an aqueous reflux reaction at 100 °C. The compacted varistor discs made from the nano-origin powders were subjected to step-sintering, microwave sintering and solid-state sintering. The influences of CTAB in different sintering methods were analyzed from the densification characteristics, evolution of sintered microstructures and associated varistor properties (IV). The conventional solid-state sintering produced 96% theoretical sintered dense samples at 1100 °C. The step and microwave sintered samples showed 93% and 99% sintered densities, respectively, with controlled microstructures having grain sizes in the range of 2–6 μm at the given conditions. The CTAB advantages were clearly seen in grain structuring and grain boundary properties, in addition to the enhanced densification and homogenous microstructures for obtaining high breakdown voltage and non-linearity coefficient.  相似文献   

14.
Viscous Sintering of a Bimodal Pore-Size Distribution   总被引:1,自引:0,他引:1  
The cylinder model, used previously to analyze the viscous sintering of flame hydrolysis preforms and gels, is shown to be consistent with other models of early- and late-stage sintering. The model is then applied to a bimodal pore-size distribution in which the different shrinkage rates of small and large pores produce local stresses. The effect of these stresses on the sintering rate is determined and shown to be substantial. Initially, the small pores accelerate the densification of the large pores; later, shrinkage of the isolated large pores is resisted by the sintered remains of the small pores. Consequently, the time to reach full density is nearly independent of the initial volume fraction of small pores.  相似文献   

15.
Systematic microstructural statistics for 3 mol% yttria‐stabilized zirconia synthesized by both conventional sintering and flash sintering with AC and DC current were obtained. Within the gage section, flash sintered microstructures were indistinguishable from those synthesized by conventional sintering procedures. With both techniques, full densification was obtained. However, from both AC and DC flash sintered specimens, heterogeneous grain size distributions and residual porosity were observed in the proximity of the electrodes. After DC sintering, an almost 400 times increased average grain size was observed near cathode compared to the gage section, unlike areas close to the anode. Concepts of Joule heating alone were not sufficient to explain the experimental observations. Instead, the activation energy for grain growth close to the cathode is lowered considerably during flash sintering, hence suggesting that electrode effects can cause significant heterogeneities in microstructure evolution during flash sintering. Microstructural characterization further indicated that microfracturing during green‐pressing and variations in contact resistance between the electrodes and the ceramic may also contribute to grain size gradients and hence local variations of physical properties.  相似文献   

16.
Densification controlled by solution-precipitation during liquid-phase sintering was analyzed for the aluminamagnesium aluminosilicate glass system. As a model system for liquid-phase sintering, narrowly sized alumina powders and up to 20 vol% magnesium aluminosilicate glass samples were isothermally sintered at 1550° to 1650°C. Densification rate increases with increasing liquid content and sintering temperature but decreases with increasing density. For samples with >15% grain growth, the densification rate during the solution-precipitation stage of sintering was proportional to (particle size)−2 and thus interface reaction-controlled. Activation energies ranged from 270 to 500 kJ/mol over the relative density range of 66% to 96%, respectively. The low activation energy is attributed to densification by particle rearrangement, whereas the higher activation energy is due to densification controlled by interface-reaction-controlled solution-precipitation. Intermediate activation energies are attributed to simultaneous densification by the two mechanisms.  相似文献   

17.
Magnesium, aluminate spinel was prepared by the spray-pyrolysis technique at 740°–1030°C from a corresponding nitrate solution. The spinel powders were characterized by poor crystallinity, large specific surface area, and hollow spheres 1–20μm in size. The crystallinity, strength of the hollow shells, and stoichiometry affected the density of sintered bodies. Densification was inhibited when skeletons of the hollow spheres remained in the green compacts. The pre-exclusion of the possibility of pore-formation originating from the hollow spheres was effective for densification. It was found that the highest density was obtained by the combination of low crystallinity and weak shells prepared by using ethyl alcohol-water as the solvent; the bulk density reached 93% TD with sintering at 1590°C for 2 h under atmospheric pressure.  相似文献   

18.
Composite densification was studied by performing slip casting and sintering experiments on an Al2O3 matrix and Si3N4 whisker system. Even though all the slip-cast powder compacts exhibited high green densities (up to 70% of the theoretical) and narrow pore-size distribution (pore radius around 15 to 30 nm), significant differential densification on a microscopic scale was found due to the existence of local whisker agglomeration. The inhomogeneous whisker distribution resulted in a binary mixture of large and small pores in the sintered composites, in which whisker-associated flaws remained stable even after prolonged sintering. The sintered microstructures showed that the spatial distribution as well as the volume fraction of the Si3N4 affect composite densification. Inhomogeneous whisker distribution dominated the complete densification of the composites.  相似文献   

19.
In order to establish the relative contributions of thermal and athermal mechanisms to densification in the absence of an extrinsic sintering pressure, nanometric powder compacts were sintered with and without applied fields using varied heating rates from 50 °C/min up to 800 °C/min. The relative contribution of the thermal and athermal mechanistic contributions to the densification behavior of two model dielectric ceramics, hydroxyapatite and zinc oxide, is evaluated in the context of the current leading theories of field-assisted sintering mechanisms. The effects of elevated heating rates in nanometric, dielectric ceramics are found to be minimal in the absence of a field. However, in the presence of an applied field there appears to be a synergistic effect with heating rate.  相似文献   

20.
The sintering behavior of green pellets obtained from nanostructured Ce0.8Gd0.2O1.9 submillimetric microspheres is studied in the present paper. Corresponding shrinkage rate curve shows a two‐step densification in dynamic conditions, with the presence of two successive extrema, at 1200 K and 1500 K. To fully understand this non‐common densification behavior, an iterative study was performed. Multiple characterizations point out multiscale organization of the matter with temperature giving rise to differential sintering stages of two different particle size classes. Concerning 1200 K‐first shrinkage rate maximum, it corresponds to the densification of nanometric aggregates of crystallites into submicrometric pre‐sintered aggregates, resulting in a specific porous microstructure with residual open porosity. As‐generated porosity combined with submicron size of pre‐sintered aggregates thus prevent from a homogeneous sintering illustrated by a single maximum shrinkage rate. Finally, the second maximum shrinkage rate at 1500 K can then be associated to optimal temperature for submicrometric particles sintering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号