首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
This paper is aimed at evaluating the influence of bi‐modal and lamellar microstructures on the behaviour of small cracks emanating from notches in α+β titanium Ti‐6Al‐4V alloy. Pulsating four point bending tests were performed at a nominal stress ratio of 0.1 and a frequency of 15 Hz on double‐edge‐notched specimens. The conditions of initiation and early propagation of fatigue cracks were investigated at two relatively high nominal stress levels corresponding to 88 and 58% of the 0.2% material yield stress. Crack closure effects were measured by an extensometric technique and discussed. Variations in crack aspect ratio were determined and considered in the ΔK calculation. Corresponding results were discussed by considering the effect of the yielded region at the notch tip calculated by elastic–plastic finite element modelling of the fatigue tests. The importance of the bi‐modal and lamellar microstructures on the material damage was highlighted and correlated to the observed oscillations in the crack growth rate. The crack growth rate data obtained were compared with those measured using standard C(T) specimens (long crack).  相似文献   

2.
The present paper is aimed at investigating the behaviour of fatigue cracks emanating from edge-notches for two different microstructures of the Ti-6246 alloy, produced by two specific thermo-mechanical treatments and defined as β-annealed and β-processed, respectively. Pulsating four point bending tests were performed on double-edge-notched specimens. The initiation and early propagation of fatigue cracks were investigated at two relatively high nominal stress levels corresponding to 88 and 58% of the 0.2% material’s yield stress. Plastic deformation at the notch tip initially produced a local stress redistribution followed by elastic shake down due to the high cyclic strain hardening rates exhibited by both microstructures, as confirmed by finite element modelling. Crack closure effects, measured by an extensometric technique, and variations in crack aspect ratio were considered in the ΔK calculation. The obtained crack growth rate data were compared with those of long cracks measured on standard C(T) specimens as well as of microcracks measured on round, unnotched S-N type of specimens to evaluate the intrinsic fatigue crack propagation resistance of the two microstructures. The contribution of notch plasticization to crack closure was estimated by finite element modelling.  相似文献   

3.
It is observed that the short fatigue cracks grow faster than long fatigue cracks at the same nominal driving force and even grow at stress intensity factor range below the threshold value for long cracks in titanium alloy materials. The anomalous behaviours of short cracks have a great influence on the accurate fatigue life prediction of submersible pressure hulls. Based on the unified fatigue life prediction method developed in the authors' group, a modified model for short crack propagation is proposed in this paper. The elastic–plastic behaviour of short cracks in the vicinity of crack tips is considered in the modified model. The model shows that the rate of crack propagation for very short cracks is determined by the range of cyclic stress rather than the range of the stress intensity factor controlling the long crack propagation and the threshold stress intensity factor range of short fatigue cracks is a function of crack length. The proposed model is used to calculate short crack propagation rate of different titanium alloys. The short crack propagation rates of Ti‐6Al‐4V and its corresponding fatigue lives are predicted under different stress ratios and different stress levels. The model is validated by comparing model prediction results with the experimental data.  相似文献   

4.
In this paper, the small fatigue crack behavior of titanium alloy TC4 at different stress ratios was investigated. Single‐edge‐notch tension specimens were fatigued axially under a nominal maximum stress of 370 MPa at room temperature. Results indicate that fatigue cracks in TC4 initiate from the interface between α and β phases or within α phase. More than 90% of the total fatigue life is consumed in the small crack initiation and growth stages. The crack growth process of TC4 can be divided into three typical stages, ie, microstructurally small crack stage, physically small crack stage, and long crack stage. Although the stress ratio has a significant effect on the total fatigue life and crack initiation life at constant σmax, its effect on crack growth rate is indistinguishable at R = ?0.1, 0.1, and 0.3 when crack growth rate is plotted as a function of ?K.  相似文献   

5.
Surface replication method was utilized to monitor the small fatigue crack initiation and growth process of single‐edge‐notch tension specimens fabricated by nickel base superalloy GH4169. Three different stress levels were selected. Results showed that small fatigue cracks of nickel base superalloy GH4169 initiated from grain boundaries or surface inclusions. The small fatigue crack initiation and growth stages took up about 80–90% of the total fatigue life. Multiple major cracks were observed in the notch root, and specimen with more major cracks seemed to have smaller fatigue life under the same test conditions. At the early growth stage, small crack behaviour might be strongly influenced by microstructures; thus, the crack growth rates had high fluctuations. However, the stress level effect on the small fatigue crack growth rates was not distinguishable for the three different stress levels. And no clear differences were found among the crack initiation lives by using replication technique.  相似文献   

6.
S. Mall  V. K. Jain  H. A. Fadag 《Strain》2011,47(Z1):e305-e318
Abstract: The effects of shot‐peening on fretting fatigue crack growth behaviour in titanium alloy, Ti‐6A1‐4V were investigated. Three shot‐peening intensities: 4A, 7A and 10A were considered. The analysis involved the fracture mechanics and finite element sub‐modelling technique to estimate crack propagation lives. These computations were supplemented with the experimentally measured total fretting fatigue lives of laboratory specimens to assess the crack initiation lives. Shot‐peening has significant effect on the initiation/propagation phases of fretting fatigue cracks; however this effect depends upon the shot‐peening intensity. The ratio of crack initiation and total life increased while the ratio of the crack propagation and total life decreased with an increase of shot‐peening intensity. Effects of residual compressive stress from shot‐peening on the crack growth behaviour were also investigated. The fretting fatigue crack propagation component of the total life with relaxation increased in comparison to its counterpart without relaxation in each shot‐peened intensity case while the initiation component decreased. Improvement in the fretting fatigue life from the shot‐peening and also with an increase in the shot‐peening intensity appears to be not always due to increase in the crack initiation resistance from shot‐peened induced residual compressive stress.  相似文献   

7.
Abstract— Initial fatigue crack propagation mechanisms at near threshold conditions were studied for four nickel-alloyed, powder-metallurgy (PM) steels. Fatigue fracture surfaces were obtained by testing smooth rectangular specimens at 30 Hz and under constant amplitude and zero mean stress conditions. Materials based on Distaloy AE were used in two densities, namely 7.15 and 7.45 g/cm3.
All the fracture surfaces were composed of three morphological regions (i) a macrocrack initiation region Rl where cracks propagated preferentially through particles (ii) a macrocrack growth region R2 and (iii) an unstable crack growth region R3 where cracks propagated preferentially between particles. Initial fatigue crack growth, in region R1, was controlled by the propagation of short cracks whose dimensions were comparable to the material microstructure. The subsequent fatigue crack growth in regions R2 and R3 was controlled by ductile rupture between microvoids. Transparticle fracture in region R1 was independent of pore distribution, while interparticle fracture in regions R2 and R3 was dependent on pore distribution.  相似文献   

8.
Constant amplitude fatigue tests have been performed using smooth specimens of a rolled AZ31 magnesium alloy in order to assess the fatigue behaviour of the material. The tests were periodically interrupted and replicas were taken from the surface of the specimens in order to reveal crack initiation and early crack propagation. Based on the derived S–N curve a very high stress sensitivity of the fatigue life can be concluded; it may be attributed to the inability of the material to accumulate fatigue damage in terms of cyclic plasticity at the early stage of fatigue. Fatigue cracks initiate already after few fatigue cycles between strain incompatibility points (e.g. grain boundaries) due to difficulties in satisfying the von Mises criterion. The initiation and propagation mechanisms of the fatigue cracks are characterized as cleavage. Furthermore, the corrosion susceptibility of the material has been investigated in a salt spray environment. It becomes evident that the presence of corrosion damage, in terms of corrosion pitting, results in the development of stress concentration, facilitating essentially the initiation and propagation of fatigue cracks. Thus, the fatigue limit is reduced to 50% of the respective value of the un-corroded material.  相似文献   

9.
Fatigue crack initiation and propagation behaviours were studied based on the dynamic response simulation by the three‐dimensional finite‐element analysis (FEA) and dynamic response experiments for tensile‐shear spot‐welded joints. The entire fatigue propagation behaviour from the surface elliptical cracks at the initiation stage to the through thickness cracks at the final stage was taken into consideration during the three‐dimensional FEA dynamic response simulations. The results of the simulations and experiments found that the fatigue cracks of spot‐welded joint from initial detectable crack sizes to crack propagation behaviour could be described by three stages. Approximately one‐half of the total fatigue life was taken in stage I, which includes micro‐crack nucleation and the small crack growth process; 20% of the total fatigue life in stage II, in which the existing surface crack propagates through the thickness of sheet and 30% of the total fatigue life in stage III, during which the through thickness crack propagates along the direction of plate width to the final failure. According to the relationship between the crack length and depth and the dynamic response frequency during the simulated fatigue damage process, the definition of fatigue crack initiation and propagation stages was proposed. The analysis will provide some information for the fatigue life prediction of the spot‐welded structures.  相似文献   

10.
Orthotropic steel decks are vulnerable to fatigue cracking in welded connections and complex geometrical details. A total of three fatigue tests were conducted on segments of orthotropic steel deck to evaluate the fatigue performance of trough‐to‐crossbeam connections with various cut‐out configurations. In the tests, the specimens were subjected to cyclic three‐point bending load and the fatigue cracks were more likely to initiate from the cope holes in the crossbeam web rather than the trough‐to‐crossbeam fillet welds. Three‐dimensional finite element models (FEM) of the specimens were built and validated by the measured deflections and stresses. Using the validated FEM, the characteristic stresses based on the theory of critical distances (TCD) were calculated for the stress concentrations along the cope holes. The fatigue crack initiation life, predicted by the TCD‐based stress combined with the plain material S–N curve, agreed reasonably with the fatigue test results. The TCD method could further form a basis of fatigue crack propagation analysis using the fracture mechanics approaches.  相似文献   

11.
12.
In this paper, compact tension specimens with tilted cracks under monotonic fatigue loading were tested to investigate I + III mixed mode fatigue crack propagation in the material of No. 45 steel with the emphasis on the mode transformation process. It is found that with the crack growth, I + III mixed mode changes to Mode I. Crack mode transformation is governed by the Mode III component and the transformation rate is a function of the relative magnitude of the Mode III stress intensity factor. However, even in the process of the crack mode transformation the fatigue crack propagation is controlled by the Mode I deformation.  相似文献   

13.
Growth of long fatigue cracks is investigated in Inconel 718 superalloy produced by selective laser melting (SLM). The fatigue crack growth curve and the threshold value of the stress intensity factor are experimentally determined on compact-tension specimens fabricated using a RENISHAW A250 system and the recommended processing parameters.The crack propagation curve and the crack propagation threshold of this SLM material are compared with literature data describing the behavior of conventionally manufactured Inconel 718. The fatigue crack growth is discussed in terms of the specific microstructure and residual stresses produced by selective laser melting.  相似文献   

14.
In order to clarify the crack propagation properties of an anisotropic material (Ni‐based directionally solidified superalloy), longitudinally loaded specimens (L‐specimens) and transversely loaded specimens (T‐specimens) with a crack are subjected to high temperature fatigue. The crack propagation rate is reasonably well correlated with the effective stress intensity factor range regardless of the propagation direction (specimens L and T), the stress range and the stress ratio. However, the crack propagation rate shows a notable fluctuation particularly in the T‐specimens. It is at most about five times faster than the average. The fracture surface features can be classified into four types with three transgranular and one intergranular types. In the former, though the crack is along the {100} or {110} planes on a macroscopic scale, it threads through the {111} or {100} planes on a microscopic scale. Crack propagation is notably accelerated in the intergranular region, while deceleration is caused by crack branching.  相似文献   

15.
The mechanism of mixed‐mode fatigue crack propagation was investigated in pure aluminum. Push‐pull fatigue tests were performed using two types of specimens. One was a round bar specimen having a blind hole, one was a plate specimen having a slit. The slit direction cut in the specimen was perpendicular or inclined 45 degrees relative to the centre of the specimen axis. In both cases, cracks propagated by mode I or by the mixed mode combining mode I and shear mode, depending on the testing conditions. In these cases the crack propagation rate was evaluated with a modified effective stress intensity factor range. Crack propagation retardation was observed in some specimens. However, it was found that the crack propagation rate could also be evaluated by the effective stress intensity factor range independent of the crack propagation mode.  相似文献   

16.
The small crack effect was investigated in two high-strength aluminium alloys: 7075-T6 bare and LC9cs clad alloy. Both experimental and analytical investigations were conducted to study crack initiation and growth of small cracks. In the experimental program, fatigue tests, small crack and large crack tests were conducted under constant amplitude and Mini-TWIST spectrum loading conditions. A pronounced small crack effect was observed in both materials, especially for the negative stress ratios. For all loading conditions, most of the fatigue life of the SENT specimens was shown to be crack propagation from initial material defects or from the cladding layer. In the analysis program, three-dimensional finite element and weight function methods were used to determine stress intensity factors and to develop SIF equations for surface and corner cracks at the notch in the SENT specimens. A plasticity-induced crack-closure model was used to correlate small and large crack data, and to make fatigue life predictions. Predicted crack-growth rates and fatigue lives agreed well with experiments. A total fatigue life prediction method for the aluminium alloys was developed and demonstrated using the crack-closure model.  相似文献   

17.
The shear mode crack growth mechanism in 1050 aluminium was investigated using pre‐cracked specimens. A small blind hole was drilled in the centre section of the specimens in order to predetermine the crack initiation position, and a push–pull fatigue test was used to make a pre‐crack. Crack propagation tests were carried out using both push–pull and cyclic torsion with a static axial load. With push–pull testing, the main crack grew by a mixed mode. It is thus apparent that shear deformation affects the fatigue crack growth in pure aluminium. In tests using cyclic torsion, the fatigue crack grew by a shear mode. The micro‐cracks initiated perpendicular and parallel to the main crack's growth direction during the cyclic torsion tests. However, the growth direction of the main crack was not changed by the coalescence of the main crack and the micro‐cracks. Shear mode crack growth tends to occur in aluminium. The crack growth behaviour is related to a material's slip systems. The number of slip planes in aluminium is smaller than that of steel and the friction stress during edge dislocation motion of aluminium is lower than many other materials. Correlation between the crack propagation rate and the stress intensity factor range was almost the same in both push–pull and cyclic torsion with tension in this study.  相似文献   

18.
The effect of microstructure on the fatigue properties of Ti–6Al–2.5Mo–1.5Cr alloy was investigated. The experimental results for both the fatigue crack initiation and propagation behaviour, as well as the dynamic fracture toughness ( K Id ) showed clearly that a lamellar microstructure is superior to two other structures. It was found that, as in the case of steels, the initiation and subsequent growth of cracks in the titanium specimens with a sharp notch may also occur on loading levels below the threshold values of the K factor (Δ K th ) determined for long fatigue cracks. In addition, measurements by interferential-contrast of the plastic zone size on the surface of specimens revealed that the different rate of crack growth at identical values of Δ K in individual structural states can roughly be correlated with the size of the plastic zone. A general relationship between the fatigue crack growth rate and plastic zone size, the modulus of elasticity and the role of crack tip shielding is discussed.  相似文献   

19.
The fatigue crack propagation in a friction stir‐welded sample has been simulated herein by means of two 3‐dimensional finite element method (FEM)‐based analyses. Numerical simulations of the fatigue crack propagation have been carried out by assuming a residual stress field as a starting condition. Two initial cracks, observed in the real specimen, have been assessed experimentally by performing fatigue tests on the welded sample. Hence, the same cracks have been placed in the corresponding FE model, and then a remote load with boundary conditions has been applied on the welded specimen. The material behaviour of the welded joint has been modelled by means of the Ramberg‐Osgood equation, while the non‐linear Kujawski‐Ellyin (KE) model has been adopted for the fatigue crack propagation under small‐scale yielding (SSY) conditions. Owing to the compressive nature of the residual stress field that acts on a part of the cracked regions, the crack closure phenomenon has also been considered. Then, the original version of the KE law has been modified to fully include the closure effect in the analysis. Later, the crack closure effect has also been assessed in the simulation of fatigue propagation of three cracks. Finally, an investigation of the fracture process zone (FPZ) extension as well as the cyclic plastic zone (CPZ) and monotonic plastic zone (MPZ) extensions have been assessed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号