首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We characterized SiO2–TiO2 nano-hybrid particles, prepared using the sol–gel method, using high-resolution transmission microscopy. A few nanometer-ordered TiO2 anatase crystallites could be observed on the monodispersed SiO2 nanoparticle surface. The quantum size effect of the TiO2 anatase crystallites is attributed to the blue shift of the absorption band. The rough surface of the SiO2–TiO2 nano-hybrid particles was derived from the developed growth planes of the TiO2 anatase crystallites, grown from fully hydrolyzed Ti alkoxide that did not react with acetic acid during the crystallization process at 600°C thermal annealing.  相似文献   

2.
Grain-oriented Bi2WO6 ceramics were fabricated by normal sintering techniques. Platelike crystallites were initially synthesized by a fused salt process using an NaCl-KCI melt. When calcined at <800°C, the Bi2WO6 crystallites are 3∼5 μ m in size and, at >850°C, =100 μm. After dissolving away the salt matrix, the Bi2WO6 particles were mixed with an organic binder and tapecast to align the platelike crystallites. Large particles were easily oriented by tapecasting but the sinterability of the tape was poor. Preferred orientation of small particles was increased by tapecasting and grain growth during sintering further improves the degree of orientation. Sintering above the 950°C phase transition, however, results in discontinuous grain growth and low densities. Optimum conditions for obtaining highly oriented ceramics with high density occur at sintering temperatures of 900°C using fine-grained powders which yield orientation factors of =0.88 and densities of 94% theoretical.  相似文献   

3.
Nanocrystalline α-Si3N4 powders have been prepared with a yield of 93% by the reaction of Mg2Si with NH4Cl in the temperature range of 450° to 600°C in an autoclave. X-ray diffraction patterns of the products can be indexed as the α-Si3N4 with the lattice constants a = 7.770 and c = 5.627 Å. X-ray photoelectron spectroscopy analysis indicates that the composition of the α-Si3N4 samples has a Si:N ratio of 0.756. Transmission electron microscopy images show that the α-Si3N4 crystallites prepared at 450°, 500°, and 550°C are particles of about 20, 40, and 70 nm in average, respectively.  相似文献   

4.
The thermal decomposition of europium hydroxide in an air atmosphere was investigated by means of weight-loss measurements, infrared spectroscopy, X-ray diffraction analysis, and electron microscopy. These studies showed that EU(OH)° decomposed at temperatures between 225° and 300°C into EuOOH, which was stable up to about 425°C. Between 435° and 465°C this compound decomposed into cubic Eu2O3, which was stable until its inversion to the high-temperature monoclinic form. X-ray diffraction data were collected for Eu(OH)3 and EuOOH and showed that the trihydroxide has a hexagonal crystal structure and the oxyhydroxide is possibly orthorhombic. The Eu(OH)2, EuOOH, and cubic EunOa powders contained particles up to several microns in size consisting of agglomerates of crystallites in the size range 200 to 400 A. The single monoclinic Eu2O3 sample studied contained crystallites whose average size was greater than 2000 A.  相似文献   

5.
Mixtures of ultrafine monoclinic zirconia and aluminum hydroxide were prepared by adding NH4OH to hydrolyzed zirconia sols containing varied amounts of aluminum sulfate. The mixtures were heat-treated at 500° to 1300°C. The relative stability of monoclinic and tetragonal ZrO2 in these ultrafine particles was studied by X-ray diffractometry. Growth of ZrO2 crystallites at elevated temperatures was strongly inhibited by Al2O3 derived from aluminum hydroxide. The monoclinic-to-tetragonal phase transformation temperature was lowered to ∼500°C in the mixture containing 10 vol% Al2O3, and the tetragonal phase was retained on cooling to room temperature. This behavior may be explained on the basis of Garvie's hypothesis that the surface free energy of tetragonal ZrO2 is lower than that of the monoclinic form. With increasing A12O3 content, however, the transformation temperature gradually increased, although the growth of ZrO2 particles was inhibited; this was found to be affected by water vapor formed from aluminum hydroxide on heating. The presence of atmospheric water vapor elevates the transformation temperature for ultrafine ZrO2. The reverse tetragonal-to-monoclinic transformation is promoted by water vapor at lower temperatures. Accordingly, it was concluded that the monoclinic phase in fine ZrO2 particles was stabilized by the presence of water vapor, which probably decreases the surface energy.  相似文献   

6.
The influence of magnesium, phosphorus, and iron additions on the low-temperature (≤1000°C) sintering of nanocrystalline α-Al2O3 derived from α-AlOOH has been investigated. α-AlOOH powder with a surface area of 50 m2/g yielded α-Al2O3 products with surface areas of 150 and 80 m2/g after dehydration at temperatures of 400° and 500°C, respectively. However, these products were prone to sintering at >600°C, and the surface area was reduced to 15 m2/g within only 1 h at 1000°C. Although magnesium and iron doping had no discernible effect, the presence of phosphorus inhibited sintering and surface-area loss significantly. Samples doped with 1%–2% phosphorus had surface areas of >31 m2/g after 100 h at 1000°C. Atomic force microscopy studies of α-Al2O3 pseudomorphs derived from α-AlOOH single crystals also demonstrated the inhibiting effect of phosphorus, as the rate of crack elimination was reduced on phosphorus-modified surfaces. The effects of the dopants are discussed with regard to their potential influence on α-Al2O3 surface energy and diffusivity.  相似文献   

7.
The heteronuclear LaMn(dhbaen)(OH)(NO3)(H2O)4 complex was synthesized and perovskite-type hexagonal LaMnO3 was obtained by its thermal decomposition at approximately 700°C. The complex and its decomposition products were analyzed using simultaneous thermogravimetric and differential thermal analysis (TG/DTA), X-ray diffraction (XRD) analysis, Fourier-transform infrared (FTIR) spectroscopy, Auger electron spectroscopy (AES), transmission electron microscopy (TEM) characterization, and specific surface area measurements. Although XRD analysis did not show the peaks of LaMnO3 for the sample sintered at 600°C, the presence of polycrystalline LaMnO3 together with an amorphous phase was confirmed by TEM-selected area diffraction. Particle sizes of the samples decomposed at 600° and 700°C were 20 and 50 nm, respectively. For the conventional solid-state reaction method, XRD results showed the formation of a LaMnO3 single phase for the samples fired above 1000°C. However, AES showed that the elemental distributions of La, Mn, and O on the surface were not homogeneous even for the sample sintered at 1200°C. The thermal decomposition of the heteronuclear complex at low temperatures allows the synthesis of single-phase hexagonal LaMnO3 powders having nanosized particles, homogeneous and free of intragranular pores, which are suitable for electroceramics applications.  相似文献   

8.
Tetragonal ( t ) ZrO2 nanoparticles have been obtained by a partial Eu3+→Zr4+ substitution, synthesized using a simple oxalate method at a moderate temperature of 650°C in air. The Eu3+ additive, 2 mol% used according to the optimal photoluminescence (PL), gives small crystallites of the sample. On raising the temperature further, the average crystallite size D grows slowly from 16 nm to a value as big as 49 nm at 1200°C. The Eu3+: t -ZrO2 nanoparticles have a wide PL spectrum at room temperature in the visible to near-IR regions (550–730 nm) in the 5D07FJ (Eu3+), J =1–4, electronic transitions. The intensity of the 5D07F4 group is as large as that of the characteristic 5D07F2 group of the spectrum in the forced electric-dipole allowed transitions. The enhanced t -ZrO2 phase stability and wide PL can be attributed to the combined effects of an amorphous Eu3+-rich surface and part of the Eu3+ doping of ZrO2 of small crystallites.  相似文献   

9.
The solid products of decomposing CaCO3 powder in vacuum at 510°C (sr-CaO) and of decomposing Ca(OH)2 powder at 320°C in vacuum (h-CaO) are particles which have approximately the same exterior dimensions as the parent CaCO3 or Ca(OH)2 particles. N2 adsorption and desorption isotherms show that sr-and h-CaO have high internal surface areas which for sr-CaO have cylindrical symmetry, with the most common diameters being ∼ 10 nm, and for h-CaO are slit-shaped, with the most common slit width being ∼ 2.7 nm. The conclusions reached in earlier investigations, i.e that these decomposition reactions in vacuum initially yield a form of CaO which has the same unit cell dimensions as the parent solid, were in error, probably because water vapor converts much of the CaO to poorly crystalline Ca(OH)2 before XRD measurements can be completed in air. From the volume of N2 adsorbed by the porous powders, the porosity of h-CaO is calculated to be 36±5% and of sr-CaO 41.5±5%. These porosities imply that the linear dimensions of the 1 to 20 μm particles of h-CaO and sr-CaO are ∼5% smaller than those of the parent particles. XRD measurements made as a function of time show that particle shrinkage must occur by cooperative, diffusionless movement of crystallites of sr-CaO or h-CaO as they form.  相似文献   

10.
Subsolidus phase relations in the system Ba0-Ti02-Ge02 were investigated using conventional solid-state reaction techniques and X-ray powder diffraction. The existence of 2 ternary compounds, BaTiGe309 and BazTiGeZ08, was confirmed and their X-ray crystallographic data are presented. The compound BaTiGe309 has a lower limit of stability at 1135°C and melts incongruently at 1232°C; Ba2TiGe2O2 melts congruently at 1228°C. Subsolidus compatibility relations in the ternary system were established and tie lines between the various phases which constitute a total of 12 compatibility triangles at 1000°C are shown in a subsolidus phase diagram.  相似文献   

11.
Calcium aluminosulfate (Ca4Al6O16S or C4A3̄) was prepared by direct synthesis from calcium and aluminum nitrates, and aluminum sulfate. CaAl4O7(CA2) formed as an intermediate at 900°C, and C4A3̄ was the main phase after calcination at 1100°C. The specific surface areas after calcination at 1100° and 1300°C were ∼2.5 and 1 m2/g, respectively. Hydration was investigated using XRD, DSC, SEM, conduction calorimetry, and solid-state 27Al MAS-NMR spectroscopy. Calorimetry showed that the induction period was longer than that of a sample prepared using conventional solid-state sintering, and this was attributed to the formation of amorphous coatings. Crystalline hydration products, principally calcium monoaluminosulfate hydrate and aluminum hydroxide, appeared subsequently. Although the induction period was very long, complete hydration occurred as early as 3 d in the sample calcined at 1100°C and was 91% complete in the sample calcined at 1300°C.  相似文献   

12.
A twin-fluid atomization spray pyrolysis technique has been used to produce lead zirconate titanate (PZT) powders from a sol–gel precursor solution. Samples were removed from ports sited along the reactor in order to examine particle development at progressive stages of pyrolysis. The total time in the reactor was 2.6 s. The size and shape of the particles showed no change between the first port (190°C) and the hottest part of the reactor (820°C), indicating that the physical structure of the particles was established during the initial drying stages. The powders were mainly composed of spherical particles, but irregular forms were also present, which were thought to result from the inward collapse of hollow gelatinous particles. Crystallization of PZT commenced at around 700°C, initially to a pyrochlore or fluorite intermediate phase, with the desired perovskite phase developing between 790°C and 815°C. However, a minor amount of the pyrochlore/fluorite phase persisted in the final powder. The final powders also contained basic lead carbonate, 2PbCO3·Pb(OH)2, which existed in the form of elongated crystallites on the surface of the PZT particles.  相似文献   

13.
Wetting phenomena and the effect of alumina surface orientation on the wettability in Si/α-Al2O3 system were studied by an improved sessile drop method using     ,     , C(0001) faces of single crystals and polycrystals at 1723 K in a reducing Ar–3% H2 atmosphere. The contact angles show a vibration behavior for all the single crystals but to a less extent for the polycrystals. The extent of the vibration correlates not only with the reaction intensity but also with the stability of the Si droplet on the alumina surfaces. The interfacial reaction leads to the formation of a series of reaction rings, which is more serious at the single crystal surfaces. More importantly, the wettability is dependent on the alumina surface orientation, with the intrinsic contact angles being about 98±2°, 101±1°, 69±1°, and 98±2°, respectively, for the     ,     , C(0001) and polycrystal α-Al2O3 substrates. The much smaller contact angle for molten Si on the C(0001) surface is explained by the favorable reduction in the Si/α-Al2O3 interfacial free energy by the terminated and enriched aluminum atoms at the reconstructed     surface. The importance of the aluminum presence at the Si/α-Al2O3 interface to the wettability of this system was further demonstrated by a substantial improvement in the wettability of the     α-Al2O3 substrates by Si–Al alloys.  相似文献   

14.
The CaO formed by complete isothermal decomposition of calcite single crystals in vacuum has surface areas that range from 127.10 m2g at 650°C to 60 ± 20 m2/g at 900°C. Surface areas are not significantly reduced by annealing at 900°C in vacuum. SEM observations and other available data show that CaO particles, which are first formed in an aggregate with relatively uniform pores, rearrange when the CaO layer thickness exceeds =10 to 50 μm.  相似文献   

15.
The microstructure of ZrO2 fine particles produced by a novel synthesis method at 450° and 950°C has been studied. The fundamentals of the synthesis method, which involves both chemical and diffusion phenomena, are presented. The method is based on mass transport through the gaseous phase between metallic zirconium and Fe2O3 powder. The mass-transporting chemical species are zirconium and iron chlorides. This article focuses on the microstructure and structure of ZrO2 particles formed by the reaction between gaseous ZrCl4 and solid Fe2O3, which is a relevant reaction step that occurs during the synthesis process. The resulting ZrO2 crystals grown on Fe2O3 particles have been analyzed using transmission electron microscopy. Microstructural characterization has been complemented by X-ray diffractometry analysis. Tetragonal-ZrO2 is produced at 450°C and monoclinic-ZrO2 single crystals are produced at 950°C.  相似文献   

16.
Ultrafine transition Al2O3 powder with spherical particles was prepared by an arc-discharge method. High-temperature characteristics were found to be superior to those of commercial A12O3 powders by DTA, specific surface-area measurements, XRD, and TEM. The powder studied transformed to α-phase at about 1335°C. After heat treatment at 1260°C for 1 h, the specific surface area of the powder decreased from 25.0 to 17.3 m2/g. Some particles were able to retain the transition phase even after 106 h at 1160°C.  相似文献   

17.
Addition of α-Fe2O3 seed particles to alkoxide-derived boehmite sols resulted in a 10-fold increase in isothermal rate constants for the transformation of γ- to α-Al2O3. Changes in porosity and surface area with sintering temperature showed no effect of seeding on coarsening of the transition alumina gels, but the 200-fold decrease in surface area associated with transformation to α-Al2O3 occurred ∼ 100°C lower in seeded gels compared with unseeded materials. As a result of high nucleation frequency and reduced microstructure coarsening, fully transformed seeded alumina retained specific surface areas >22 m2/g and exhibited narrow pore size distributions, permitting development of fully dense, submicrometer α-Al2O3 at ∼ 1200°C.  相似文献   

18.
Mixtures of Ag1− x Pd x ( x =0.2, 0.3) and doped PZT ceramic powders have been heat treated in air and the resulting phase content has been analyzed by X-ray diffraction and transmission electron microscopy. Beginning around 400°C, a phase similar to PbPdO2 is formed on the surface of the Ag1− x Pd x particles and subsequently decomposes at temperatures <700°C. Consequently, the remaining Ag1− x Pd x powder becomes significantly silver-rich while the reaction progresses. After decomposition the Pd appears to realloy and the initial Ag1− x Pd x composition is recovered. We show that the reaction is all but eliminated in a nitrogen atmosphere. The occurrence of this reaction was also investigated in PZT multilayer actuators cofired with Ag0.7Pd0.3 electrodes. Transmission electron microscope analysis revealed the presence of distinct crystallites at the electrode–ceramic interface, most likely nucleated from a PbO liquid phase arising from the decomposition of PbPdO2.  相似文献   

19.
Soft-chemistry routes were used to synthesize Ce0.9Gd0.1O1.95-based powders with attractive and stable structural, morphological, and textural properties. In the intermediate temperature range between 500° and 700°C, the average Gd-doped CeO2 (CGO) crystallite size is in the range 9–22 nm and the specific surface area varies from 43.4 to 8 m2/g. Above 700°C, a phase separation occurs between ceria and gadolinium oxide. Addition of alumina was found to be useful in stabilizing the CGO nanocrystallites at a high temperature and to avoid phase separation. A homogeneous dispersion of Pt nanoparticles (<10 nm at 1000°C) in the CGO materials was found to be possible by post-impregnation, although direct insertion of the Pt precursors during the synthesis led to aggregated particles, with less potential for catalytic applications.  相似文献   

20.
12CaO·7Al2O3 (C12A7) composed of nanosize cage structure can clathrate oxygen radicals (O) and has a high potential to application of strong oxidizing catalysis. In the present report, we demonstrate a fabrication route to C12A7 fine powders by Chemical Solution Deposition method in order to enhance the catalytic reactivity. Aluminum sec-butoxide, calcium nitrate tetrahydrate, acetylacetone, 2-methoxyethanol, and nitric acid were used as raw materials. Precursor solution was dried and annealed at 800°–900°C in air or O2 atmosphere. Crystalline C12A7 powders were obtained by annealing at 900°C in O2 atmosphere. Scanning electron microscope and transmission electron microscope images of the obtained powders revealed C12A7 particles were sintered and formed several micrometer particles with many pores. BET specific surface area of the powders was 4.2 m2/g. Possibility for synthesizing C12A7 powder with higher specific surface area by the solution process was indicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号