首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 962 毫秒
1.
2.
The organoselenium compounds benzyl selenocyanate (BSC) and 1,4-phenylenebis(methylene)selenocyanate (p-XSC), as well as sodium selenite, are effective chemopreventive agents for various chemically induced tumors in animal models at both the initiation and postinitiation stages. The mechanisms involved at the postinitiation stage are not clear. Because several lines of evidence indicate that inhibition of excess DNA (cytosine-5)-methyltransferase (Mtase) may be a sufficient factor for the suppression or reversion of carcinogenesis, we examined the effects of sodium selenite, BSC, p-XSC and benzyl thiocyanate (BTC), the sulfur analog of BSC, on Mtase activity in nuclear extracts of human colon carcinomas, and of p-XSC on the Mtase activity of HCT116 human colon carcinoma cells in culture. For this purpose, we developed an improved Mtase assay, in which the incorporation of the methyl-[3H] group from S-adenosyl[methyl-3H]methionine into deoxycytidine of poly(dI-dC)-poly(dI-dC), is specifically determined by HPLC with radioflow detection after enzymatic hydrolysis, enhancing specificity and reliability. In a variation, using SssI methyltransferase and labeled S-adenosylmethionine, the overall methylation status of DNA in various tissues can also be compared. Selenite, BSC and p-XSC inhibited Mtase extracted from a human colon carcinoma with IC50s of 3.8, 8.1 and 5.2 microM, respectively; BTC had no effect. p-XSC also inhibited the Mtase activity and growth of human colon carcinoma HCT116 cells, with an IC50 of approximately 20 microM. The improved Mtase assay should prove to be a reliable method for screening potential Mtase inhibitors, especially using cells in culture. We suggest that inhibition of Mtase may be a major mechanism of chemoprevention by selenium compounds at the postinitiation stage of carcinogenesis.  相似文献   

3.
BsoFI , ItaI and Fsp4HI are isoshizomers of Fnu4HI (5'-GC NGC-3'). Both Fnu4HI and BsoFI have previously been shown to be inhibited by cytosine-specific methylation within the recognition sequence. Fnu4HI is inhibited if either the internal cytosine at position 2 or the external cytosine at position 5 of the restriction sequence is methylated, but the precise nature of the methylation sensitivity of BsoFI is unclear from the literature. The methylation sensitivities of ItaI and Fsp4HI have not previously been reported. By methylating the plasmid pUC18 with M.SssI (a DNA cytosine-5'-methyltransferase with a specificity for CpG), we have determined that ItaI is sensitive only to methylation of internal CpG sites within the restriction sequence. The methylation sensitivity of Fsp4HI is identical to that of Fnu4HI, being inhibited by methylation of either internal CpG sites or overlapping CpG sites. BsoFI , like the other isoschizomers tested, is sensitive to a combination of internal and overlapping CpG methylation. BsoFI is also sensitive to overlapping CpG methylation (in the absence of internal CpG methylation) if CpG overlap with both sides of the recognition sequence. Sites containing one overlapping CpG (in the absence of internal CpG) are cut when methylated but show marked individual variation in their rates of cleavage. Considerable variation in the rate of cleavage by BsoFI is also observed at sites containing only internal methylated CpG. Some sites are cut slowly, whilst others fail to cut even after prolonged incubation with excess of enzyme.  相似文献   

4.
DNA (cytosine-5-)-methyltransferase is essential for viable mammalian development and has a central function in the determination and maintenance of epigenetic methylation patterns. Steady-state and substrate trapping studies were performed to better understand how the enzyme functions. The catalytic efficiency was dependent on substrate DNA length. A 14-fold increase in KmDNA was observed as the length decreased from 5000 to 100 base pairs and kcat decreased by a third. Steady-state analyses were used to identify the order of substrate addition onto the enzyme and the order of product release. Double-reciprocal patterns of velocity versus substrate concentration intersected far from the origin and were nearly parallel. The kinetic mechanism does not appear to change when the DNA substrate is either 6250 or 100 base pairs in length. Isotope trapping studies showed that the initial enzyme-AdoMet complex was not catalytically competent; however, the initial enzyme-poly(dI.dC-dI.dC) complex was observed to be competent for catalysis. Product inhibition studies also support a sequential ordered bi-bi kinetic mechanism in which DNA binds to the enzyme first, followed by S-adenosyl-L-methionine, and then the products S-adenosyl-L-homocysteine and methylated DNA are released. The proposed mechanism is similar to the mechanism proposed for M. HhaI, a bacterial DNA (cytosine-5-)-methyltransferase. Evidence for an enzyme-DNA-DNA ternary complex is also presented.  相似文献   

5.
6.
We have developed a rapid quantitative method (Ms-SNuPE) for assessing methylation differences at specific CpG sites based on bisulfite treatment of DNA followed by single nucleotide primer extension. Genomic DNA was first reacted with sodium bisulfite to convert unmethylated cytosine to uracil while leaving 5-methylcytosine unchanged. Amplification of the desired target sequence was then performed using PCR primers specific for bisulfite-converted DNA and the resulting product isolated and used as a template for methylation analysis at the CpG site(s) of interest. This methylation-sensitive technique has several advantages over existing methods used for detection of methylation changes because small amounts of DNA can be analyzed including microdissected pathology sections and it avoids utilization of restriction enzymes for determining the methylation status at CpG sites.  相似文献   

7.
Mitomycin C (MC) is a powerful antitumor agent that targets the DNA sequence CpG. Because it is likely that this dinucleotide will contain 5-methylcytosine in vivo, we have compared the cross-linking efficiency of MC for DNA containing either 5-methylcytosine or normal cytosine embedded in random-sequence DNA oligomers. We have found that mitomycin C displays a small but significant preference for methylated DNA. Recognition of an abnormal methylation pattern in the DNA of transformed cells may therefore be one mechanism by which MC exerts its chemotherapeutic effects.  相似文献   

8.
Transition mutations at DNA 5-methylcytosines, congregated at CpG islands, are implicated in the etiogenesis of human diseases. Formation of 5-methylcytosine hydrate (5-methyl-6-hydroxy-5,6-dihydrocytosine) by hydration of the 5,6 double bond of 5-methylcytosine has been suggested as an intermediate in a possible mechanism of deamination to thymine. Ultraviolet irradiation of DNA yields pyrimidine hydrates, which are removed by repair glycosylases. We have identified 5-methylcytosine photoproducts following their excision from DNA by E. coli endonuclease III. Poly(dG-[3H]5-medC):poly(dG-[3H]5-medC) was irradiated and reacted with the enzyme. Radiolabeled photoproduct releases were directly proportional to irradiation doses and enzyme concentrations. These were identified as cis-thymine hydrate (6-hydroxy-5,6-dihydrothymine) and trans-thymine hydrate. Recovery of thymine hydrates is consistent with hydration of pyrimidines. Subsequent heating (which converts thymine hydrates to thymines) and chemical sequencing of an irradiated, 3' end-labeled, synthetic DNA strand demonstrated the appearance of thymine at the 5-methylcytosine site. These results demonstrate a mechanism for deamination of DNA 5-methylcytosine via hydration of the 5,6 double bond, putatively yielding 5-methylcytosine hydrate; this deaminates to thymine hydrate, and loss of water yields thymine formation at the 5-methylcytosine site. Identification of these DNA 5-methylcytosine modified moieties indicates a possible molecular mechanism for the frequent transition mutations found at CpG loci.  相似文献   

9.
A key step in the predicted mechanism of enzymatic transfer of methyl groups from S-adenosyl-l-methionine (AdoMet) to cytosine residues in DNA is the transient formation of a dihydrocytosine intermediate covalently linked to cysteine in the active site of a DNA (cytosine C5)-methyltransferase (DNA C5-MTase). Crystallographic analysis of complexes formed by HhaI methyltransferase (M.HhaI), AdoMet and a target oligodeoxyribonucleotide containing 5-fluorocytosine confirmed the existence of this dihydrocytosine intermediate. Based on the premise that 5,6-dihydro-5-azacytosine (DZCyt), a cytosine analog with an sp3-hybridized carbon (CH2) at position 6 and an NH group at position 5, could mimic the non-aromatic character of the cytosine ring in this transition state, we synthesized a series of synthetic substrates for DNA C5-MTase containing DZCyt. Substitution of DZCyt for target cytosines in C-G dinucleotides of single-stranded or double-stranded oligodeoxyribonucleotide substrates led to complete inhibition of methylation by murine DNA C5-MTase. Substitution of DZCyt for the target cytosine in G-C-G-C sites in double-stranded oligodeoxyribonucleotides had a similar effect on methylation by M. HhaI. Oligodeoxyribonucleotides containing DZCyt formed a tight but reversible complex with M.HhaI, and were consistently more potent as inhibitors of DNA methylation than oligodeoxyribonucleotides identical in sequence containing 5-fluorocytosine. Crystallographic analysis of a ternary complex involving M.HhaI, S-adenosyl-l-homocysteine and a double-stranded 13-mer oligodeoxyribonucleotide containing DZCyt at the target position showed that the analog is flipped out of the DNA helix in the same manner as cytosine, 5-methylcytosine, and 5-fluorocytosine. However, no formation of a covalent bond was detected between the sulfur atom of the catalytic site nucleophile, cysteine 81, and the pyrimidine C6 carbon. These results indicate that DZCyt can occupy the active site of M.HhaI as a transition state mimic and, because of the high degree of affinity of its interaction with the enzyme, it can act as a potent inhibitor of methylation.  相似文献   

10.
The first three-dimensional structure of a DNA methyltransferase is presented. The crystal structure of the DNA (cytosine-5)-methyltransferase, M.HhaI (recognition sequence: GCGC), complexed with S-adenosyl-L-methionine has been determined and refined at 2.5 A resolution. The core of the structure is dominated by sequence motifs conserved among all DNA (cytosine-5)-methyltransferases, and these are responsible for cofactor binding and methyltransferase function.  相似文献   

11.
Bisulfite converts non-methylated cytosine in DNA to uracil leaving 5-methylcytosine unaltered. Here, predicted changes in restriction enzyme sites following reaction of genomic DNA with bisulfite and amplification of the product by the polymerase chain reaction (PCR) were used to assess the methylation of CpG sites. This procedure differs from conventional DNA methylation analysis by methylation-sensitive restriction enzymes because it does not rely on an absence of cleavage to detect methylated sites, the two strands of DNA produce different restriction enzyme sites and may be differentially analyzed, and closely related sequences may be separately analyzed by using specific PCR primers.  相似文献   

12.
Although DNA is generally considered to be a poor immunogen, recent evidence suggests that DNA from various species differ in their immunological activity and that bacterial DNA can induce the in vitro proliferation of normal murine B cells. To delineate structural features of DNA associated with mitogenic activity, the response of murine lymphocytes to various natural and synthetic polynucleotides was determined. Both ss and dsDNA from two different bacterial strains were equally effective in inducing proliferation. This response was independent of adenosine methylation, since DNA from dam- Escherichia coli stimulated proliferation. Among the synthetic polymers tested, only the duplexes poly(dG).poly(dC), and poly(dG.dC) were mitogenic, while polymers containing dA, dT, or dI alone or in combination with dG and dC were inactive. The mitogenic activity of poly(dG.dC) was eliminated, however, upon substitution of rG for dG or 5medC for dC. The mitogenic activity did not require high molecular weight DNA since active polymers ranged in size from approximately 260 to 800 base pairs. In addition, E. coli DNA fragments of 50-300 and 125-600 bases were mitogenic. Together, these data suggest that the mitogenic activity of DNA is dependent on sequence-specific determinants that can be presented by synthetic DNA duplexes as well as bacterial ss and dsDNA.  相似文献   

13.
Changes in DNA methylation during tobacco pollen development have been studied by confocal fluorescence microscopy using a monoclonal anti-5-methylcytosine (anti-m5C) antibody and a polyclonal anti-histone H1 (anti-histone) antibody as an internal standard. The specificity of the anti-m5C antibody was demonstrated by a titration series against both single-stranded DNA and double-stranded DNA substrates in either the methylated or unmethylated forms. The antibody was found to show similar kinetics against both double- and single-stranded DNA, and the fluorescence was proportional to the amount of DNA used. No signal was observed with unmethylated substrates. The extent of methylation of the two pollen nuclei remained approximately constant after the mitotic division that gave rise to the vegetative and generative nuclei. However, during the subsequent development of the pollen, the staining of the generative nucleus decreased until it reached a normalized value of (1)/(5) of that of the vegetative nucleus. The use of a confocal microscope makes these data independent of possible focusing artefacts. The anti-histone antibody was used as a control to show that, while the antibody staining directed against 5-methylcytosine changed dramatically during pollen maturation, the histone signal did not. We observed the existence of structural dimorphism amongst tobacco pollen grains, the majority having three pollen apertures and the rest with four. However, the methylation changes observed occurred to the same extent in both subclasses.  相似文献   

14.
The most prevalent DNA lesion induced by UV irradiation is the cyclobutane pyrimidine dimer (CPD), which forms at positions of neighboring pyrimidines. Here we show that the rare DNA base 5-methylcytosine is the preferred target for CPD formation when cells are irradiated with natural sunlight. We have mapped the distribution of CPDs formed in normal human keratinocytes along exons of the p53 gene. Codons 196, 245, 248, and 282, which are mutational hot spots in skin cancers, are only weakly to moderately susceptible to formation of CPDs after irradiation with UVC (254 nm) or UVB (320 nm) light sources. However, when cells were exposed to natural sunlight, CPD formation was enhanced up to 15-fold at these codons due to the presence of 5-methylcytosine bases. These results suggest that CPDs containing 5-methylcytosine may play an important role in formation of sunlight-induced skin tumors and that methylation of CpG sequences, besides being involved in spontaneous mutagenesis processes, can also create preferential targets for environmental mutagens and carcinogens.  相似文献   

15.
The inheritance of gametic methylation patterns is a critical event in the imprinting of genes. In the case of the imprinted RSVIgmyc transgene, the methylation pattern in the unfertilized egg is maintained by the early mouse embryo, whereas the sperm's methylation pattern is lost in the early embryo. To investigate the cis-acting requirements for this preimplantation stage of genomic imprinting, we examined the fate of different RSVIgmyc methylation patterns, preimposed on RSVIgmyc and introduced into the mouse zygote by pronuclear injection. RSVIgmyc methylation patterns with a low percentage of methylated CpG dinucleotides, generated by using bacterial cytosine methylases with four-base recognition sequences, were lost in the early embryo. In contrast, methylation was maintained when all CpG dinucleotides were methylated with the bacterial SssI (CpG) methylase. This singular maintenance of RSVIgmyc methylation preimposed with SssI methylase appears to be specific to the early, undifferentiated embryo; differentiated NIH 3T3 fibroblasts transfected with methylated versions of RSVIgmyc maintained all methylation patterns, independent of the level of preimposed methylation. The methylation pattern of the RSVIgmyc allele in adult founder transgenic mice that was produced by pronuclear injection of an SssI-methylated construct could not be distinguished from the maternal RSVIgmyc methylation pattern. Thus, a highly methylated allele in adult mice, normally generated by transmission of RSVIgmyc through the female germ line, was also produced in founder transgenic mice by bypassing gametogenesis and introducing a highly methylated RSVIgmyc into the mouse zygote. These results suggest that RSVIgmyc methylation itself is a cis-acting signal for the preimplantation maintenance of the oocyte's methylation pattern and, therefore, a cis-acting signal for RSVIgmyc imprinting. Furthermore, our inability to identify a sequence element within RSVIgmyc that was absolutely required for its imprinting suggests that the extent of RSVIgmyc methylation, rather than a particular pattern of methylation, is the principal feature of this imprinting signal.  相似文献   

16.
Transitional mutations at CpG dinucleotides account for approximately a third of all point mutations. These mutations probably arise through spontaneous deamination of 5-methylcytosine. Studies of CpG mutation rates in disease-linked genes, such as factor VIII and FGFR3, have indicated that they more frequently originate in male than in female germ cells. It has been speculated that these sex-biased mutation rates might be a consequence of sex-specific methylation differences between the female and the male germ lines. Using the bisulfite-based genomic-sequencing method, we investigated the methylation status of the human factor VIII and FGFR3 genes in mature male and female germ cells. With the exception of a single CpG, both genes were found to be equally and highly methylated in oocytes and spermatocytes. Whereas these observations strongly support the notion that DNA methylation is the major determining factor for recurrent CpG germ-line mutations in patients with hemophilia and achondroplasia, the higher mutation rate in the male germ line is apparently not a simple reflection of sex-specific methylation differences.  相似文献   

17.
Echinomycin is a peptide antibiotic which binds strongly to double-helical DNA up to a limit of approximately one molecule per five base-pairs. There is no detectable interaction with rRNA and only extremely feeble non-specific interaction with poly(rA)-poly(rU). Heat denaturation of DNA greatly decreases the binding, and similarly limited interaction is observed with naturally occurring single-stranded DNA. Association constants for binding to nine double-helical DNA species from different sources are presented; they vary by a factor of approximately 10, but are not simply related to the gross base composition. The interaction with DNA is ionic-strength-dependent, the binding constant falling by a factor of 4 when the ionic strength is raised from 0.01 to 0.10mol/litre. From the effect of temperature on the association constant for calf thymus DNA, the enthalpy of interaction is calculated to be about -13kJ/mol (-3kcal/mol). Binding of echinomycin persists in CsCl gradients and the buoyant density of nicked bacteriophage PM2 DNA is decreased by 25 mg/ml. Echinomycin interacts strongly with certain synthetic poly-deoxynucleotides, the binding constant decreasing in the order poly(dG)-poly(dC) greater than poly(dG-dC) greater than poly(dA-dT). For the latter two polymers the number of base-pairs occluded per bound antibiotic molecule is calculated to be three, whereas for poly(dG)-poly(dC) it is estimated to be four to five. Poly(dA)-poly(dT) and poly(dI)-poly(dC) interact only very weakly with the antibiotic. Poly(dI-dC) interacts to a slightly greater extent, but the binding curve is quite unlike that seen with the three strongly binding synthetic polynucleotides. Echinomycin affects the supercoiling of closed circular duplex bacteriophage PM2 DNA in the characteristic fashion of intercalating drugs. At low ionic strength the unwinding angle is almost twice that of ethidium. Likewise the extension of the helix, determined from changes in the viscosity of rod-like sonicated DNA fragments, is nearly double that expected for a simple (monofunctional) intercalation process. On this basis the interaction process is characterized as bifunctional intercalation. At higher ionic strength the unwinding angle relative to that of ethidium and the helix extension per bound echinomycin molecule fall, indicating a smooth progression towards more nearly monofunctional intercalation. Two simpler compounds which act as analogues of the quinoxaline chromophores of echinomycin, quinoxaline-2-carboxamide and the trypanocidal drug Bayer 7602, interact with DNA very much more weakly than does echinomycin, showing that the peptide portion of the antibiotic plays an essential role in determining the strength and specificity of the interaction.  相似文献   

18.
Linear 75mer double-stranded DNA containing a single pyrimidine dimer at a unique site was used to investigate pyrimidine dimer-dependent endonuclease activities from human cells. HeLaS3 cell extract incised the target DNA at the fourth phosphodiester linkage 3' to the pyrimidine dimer. However, incision of the DNA at 5' side of the pyrimidine dimer was not detected. The incision was also detected in cell extracts prepared from other excision repair-proficient cell lines. Incision was detected only on the DNA strand containing a pyrimidine dimer in the presence of poly(dI-dC)-poly(dI- dC) double strand. The reaction required Mg2+ but not ATP. The extract prepared from excision repair-deficient xeroderma pigmentosum (XP) cells belonging to the complementation group A was unable to incise the DNA. Extracts from the complementation groups C, D, and G incised the DNA very weakly at the third phosphodiester linkage 3' to the pyrimidine dimer, a site different from that incised by normal human cell extract. These results suggest that the observed incision reaction is associated with excision repair in human cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号