首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultrasound elastography has developed into an imaging modality suitable for detection and diagnosis of cancers in the breast, prostate, and thyroid and for monitoring ablative therapies in the liver, kidneys, and other sites. In this article, a new approach is described that enables the reduction of noise artifacts in elastography without a significant reduction in either the contrast or spatial resolution. The technique uses angular-weighted compounding of local angular strains estimated from echo signals scanned at different insonification angles. Strain estimated along angular insonification directions can be separated into strain tensor components along the axial (direction of compression) and lateral directions. The mechanical stimulus is applied only along one direction. Angular-weighting factors are derived from the relationship between the axial and lateral strains under the assumption of tissue incompressibility. Experimental results using a uniformly elastic, tissue-mimicking phantom demonstrate the improvement in the signal-to-noise ratio obtained with angular-weighted compounding. Variation in the signal-to-noise ratio obtained using different angular increments also is investigated. Elastograms obtained from an inclusion phantom also demonstrate the improvement in contrast detail resolution obtained using spatial-angular compounding.  相似文献   

2.
Spatial angular compounding for elastography is a new technique that enables the reduction of noise artifacts in elastograms. This technique is most effective when the angular strain estimates to be averaged or compounded are uncorrelated. In this paper, we present a theoretical analysis of the correlation between pre- and postcompression radio-frequency echo signals acquired from the same location but at different beam insonification angles. The accuracy of the theoretical results is verified using radiofrequency pre- and postcompression echo signals acquired using a real-time clinical scanner on tissue-mimicking uniformly elastic and homogenous phantoms. The theory predicts an increased signal decorrelation with an increase in the beam-steered insonification angle as the applied strain increases and for increasing depths in the medium. Theoretical results provide useful information regarding the correlation of the angular strain estimates obtained from different beam angles that helps in finding optimum compounding schemes for elastography.  相似文献   

3.
Using the shear wave propagation in solids, the transient elastography technique has been developed to assess the elastic properties of soft tissues. Here, a new approach of transient elastography allows assessing the viscoelastic properties of soft tissues. In this paper, the method is used to follow-up the sol-gel transition of an agar-gelatin mixture noninvasively. The shear wave velocity and shear wave attenuation through the mixture were continuously monitored in the audible range of frequencies (from 50 Hz to 200 Hz). The observed changes in velocities and attenuations as a function of frequency confirmed the validity of the Voigt's model to describe the gel at its stable mechanical state. By a simple inverse problem approach, based on the one-dimensional (1-D) Helmholtz equation, the elasticity and the viscosity of such a mixture were recovered as a function of time. The results obtained are in good agreement with the literature and theoretical predictions. Overall, they demonstrate the high sensitivity of the transient elastography measurements to the rheological parameter changes in agar-gelatin mixtures during gelation.  相似文献   

4.
In vivo measurement of the mechanical properties of soft tissues is essential to provide necessary data in biomechanics and medicine (early cancer diagnosis, study of traumatic brain injuries, etc.). Imaging techniques such as magnetic resonance elastography can provide 3D displacement maps in the bulk and in vivo, from which, using inverse methods, it is then possible to identify some mechanical parameters of the tissues (stiffness, damping, etc.). The main difficulties in these inverse identification procedures consist in dealing with the pressure waves contained in the data and with the experimental noise perturbing the spatial derivatives required during the processing. The optimised virtual fields method (OVFM) ( 26 ), designed to be robust to noise, presents natural and rigorous solution to deal with these problems. The OVFM has been adapted to identify material parameter maps from magnetic resonance elastography data consisting of 3D displacement fields in harmonically loaded soft materials. In this work, the method has been developed to identify elastic and viscoelastic models. The OVFM sensitivity to spatial resolution and to noise has been studied by analysing 3D analytically simulated displacement data. This study evaluates and describes the OVFM identification performances: Different biases on the identified parameters are induced by the spatial resolution and experimental noise. The well‐known identification problems in the case of quasi‐incompressible materials also find a natural solution in the OVFM. Moreover, an a posteriori criterion to estimate the local identification quality is proposed. The identification results obtained on actual experiments are briefly presented.  相似文献   

5.
An in-service, nonintrusive technique for the characterization of impulsive noise in telecommunication systems is presented. It is based on the segmentation of the signal observed during a telephone call in speech and noise frames. The signal observed during noise frames is further processed by means of a hypothesis testing procedure in order to detect the presence of impulses. Experimental results that show the effectiveness of the proposed technique are presented and discussed  相似文献   

6.
为了解决复杂海洋环境中水声信号的特征提取问题,提出了一种利用集合经验模态分解(EEMD)研究舰船辐射噪声特征提取的方法。对经验模态分解后的不同类别三类舰船辐射噪声信号各阶固有模态函数(IMF)中心频率可分性进行分析,并讨论了最强IMF中心频率特征参数。通过比较一定数量不同类别的舰船辐射噪声的最强IMF中心频率及高低频能量差特征参数发现,同类舰船的特征参数基本处于同一水平,不同类型的舰船存在一定差异。实验结果表明,采用EEMD的舰船辐射噪声信号的最强IMF中心频率作为特征参数相比高低频能量差特征参数对舰船具有较好的可分性。  相似文献   

7.
A method for improving the contrast resolution of B-mode images is proposed by combining the speckle-reduction technique of frequency compounding (FC) and the codedexcitation and pulse-compression technique called resolution enhancement compression (REC). FC suppresses speckle but at the expense of a reduction in axial resolution. Using REC, the axial resolution and bandwidth of the imaging system was doubled. Therefore, by combining REC with FC (REC-FC), the tradeoff between axial resolution and contrast enhancement was extended significantly. Simulations and experimental measurements were conducted with a single-element transducer (f/2.66) having a center frequency of 2.25 MHz and a -3-dB bandwidth of 50%. Simulations and measurements of hyperechoic (+6 dB) tissue-mimicking targets were imaged. Four FC cases were evaluated: full-, half-, third-, and fourth-width of the true impulse response bandwidth. The image quality metrics used to compare REC-FC to conventional pulsing (CP) and CP-FC were contrast-to-noise ratio (CNR), speckle signal-to- noise ratio, histogram pixel intensity, and lesion signal-to-noise ratio. Increases in CNR of 121%, 231%, 302%, and 391% were obtained in experiments when comparing REC-FC for the full-, half-, third-, and fourth-width cases to CP. Furthermore, smaller increases in CNR of 112%, 233%, and 309% were obtained in experiments when comparing CP-FC for the half-, third-, and fourth-width cases to CP. Improved lesion detectability was observed by using REC-FC.  相似文献   

8.
Myocardial elastography (ME), a radio frequency (RF)-based speckle tracking technique with one-dimensional (1-D) cross correlation and novel recorrelation methods in a 2-D search was proposed to estimate and fully image 2-D transmural deformation field and to detect abnormal cardiac function. A theoretical framework was first developed in order to evaluate the performance of 2-D myocardial elastography based on a previously developed 3-D finite-element model of the canine left ventricle. A normal (control) and an ischemic (left-circumflex, LCx) model, which more completely represented myocardial deformation than a kinematic model, were considered. A 2-D convolutional image formation model was first used to generate RF signals for quality assessment of ME in the normal and ischemic cases. A 3-D image formation model was further developed to investigate the effect of the out-of-plane motion on the 2-D, in-plane motion estimation. Both orthogonal, in-plane displacement components (i.e., lateral and axial) between consecutive RF frames were iteratively estimated. All the estimated incremental 2-D displacements from end-diastole (ED) to end-systole (ES) were then accumulated to acquire the cumulative 2-D displacements, which were further used to calculate the cumulative 2-D systolic finite strains. Furthermore, the cumulative systolic radial and circumferential strains, which were angle- and frame-rate independent, were obtained from the 2-D finite-strain components and imaged in full view to detect the ischemic region. We also explored the theoretical understanding of the limitations of our technique for the accurate depiction of disease and validated it in vivo against tagged magnetic resonance imaging (tMRI) in the case of a normal human myocardium in a 2-D short-axis (SA) echocardiographic view. The theoretical framework succeeded in demonstrating that the 2-D myocardial elastography technique was a reliable tool for the complete estimation and depiction of the in-plane myocardial deformation field as well as for accurate identification of pathological mechanical function using established finite-element, left-ventricular canine models. In a preliminary study, the 2-D myocardial elastography was shown capable of imaging myocardial deformation comparable to equivalent tMRI estimates in a clinical setting.  相似文献   

9.
An adaptive strain estimator for elastography   总被引:7,自引:0,他引:7  
Elastography is based on the estimation of strain due to applied tissue compression. In conventional elastography, strain is computed from the gradient of the displacement estimates between gated pre- and postcompression echo signals. Gradient-based estimation methods are known to be susceptible to noise. In elastography, in addition to the electronic noise, a principal source of estimation error is the decorrelation of the echo signal as a result of tissue compression (decorrelation noise). Temporal stretching of postcompression signals previously was shown to reduce the decorrelation noise. In this paper, we introduce a novel estimator that uses the stretch factor itself as an estimator of the strain. It uses an iterative algorithm that adaptively maximises the correlation between the pre- and postcompression echo signals by appropriately stretching the latter. We investigate the performance of this adaptive strain estimator using simulated and experimental data. The estimator has exhibited a vastly superior performance compared with the conventional gradient-based estimator.  相似文献   

10.
The noise characteristics of randomly networked single walled carbon nanotubes grown directly by plasma enhanced chemical vapor deposition with field effect transistor. Geometrical complexity due to the large number of tube-tube junctions in the nanotube network is expected to be one of the key factors for the noise power of 1/f dependence. We investigated low frequency noise as a function of channel length (2-10 microm) and found that increased with longer channel length. Percolational behaviors of nanotube network that differs from ordinary semiconducting and metallic materials can be characterized by a geometrical picture with electrical homo- and hetero-junctions. Fixed nanotube density provides a test conditions to evaluate the contributions of junctions as a noise center. Hooge's empirical law is applied to investigate the low frequency noise characteristics of single walled carbon nanotube random network transistors. The noise power shows the dependence of the transistor channel length. It is understood that nanotube/nanotube junctions act as a noise center. However, the differences induced by channel length in the noise power are observed as not so significant. We conclude that tolerance of low frequency noise is important property for SWNT networks as an electronic device application.  相似文献   

11.
端点检测技术是语音信号处理的关键技术之一,为提高低信噪比环境下端点检测的准确率和稳健性,提出了一种非平稳噪声抑制和调制域谱减结合功率归一化倒谱距离的端点检测算法。该算法首先通过抑制非平稳噪声再采用调制域谱减消除残余噪声来提升信噪比,减少语音失真。然后再提取每帧信号的功率归一化倒谱系数,计算每帧信号与背景噪声的功率归一化倒谱距离。最后将该倒谱距离作为检测参数,采用双门限判决方法进行端点检测。实验结果表明,该端点检测算法对语音帧和噪声帧具有较好的区分性。此外,在低信噪比环境下,所提出的算法对于不同类型的噪声都具有较好的稳健性。  相似文献   

12.
We have developed a magnetic resonance elastography (MRE) technique to experimentally investigate the force chain structure within a densely packed 3D granular assembly. MRE is an MRI technique whereby small periodic displacements within an elastic material are measured. We verified our MRE technique using a gel phantom and then extended the method to image the force carrying chain structure within a 3D granular assembly of particles under an initial pre-stressed condition, on top of which is superimposed a small-amplitude vibration. We find that significant coherent displacements form along force chains, where spin phase accumulates preferentially, allowing visualization. This work represents the first time that the internal force chain structure of a dry assembly of granular solids has been fully acquired in three dimensions.  相似文献   

13.
Different noninvasive or minimally invasive therapeutic ablation procedures can produce tissue necrosis associated with local-stiffness increase. Although elastography has been proved as a potential evaluation tool for many kinds of ablation-induced lesions, the application of subtraction technique in elastography to enhance the visualization of the ablation lesions has rarely been reported. In this paper, subtraction elastography is proposed to evaluate the ablation-induced lesions. Three models are constructed to simulate different kinds of ablated inclusions. The simulation results showed that subtraction elastography is superior to conventional elastography in detecting the ablation-induced lesions with higher signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). The artifacts induced by elastographic signal processing algorithms can be largely reduced in subtraction elastography. In addition, subtraction elastography is less influenced by the stiff background and can provide more reliable boundary information about the lesion than conventional elastography. Furthermore, the feasibility of subtraction elastography is validated by an in vitro experiment of ethanol-induced hepatic lesions. The preliminary results of this work suggest that subtraction elastography may be a good option for the evaluation of ablationinduced lesions.  相似文献   

14.
不同浅海环境下点声源海底地震波特征研究   总被引:3,自引:0,他引:3       下载免费PDF全文
航行舰船在海底岩土层中引起的弹性波被称为舰船地震波,主要由舰船低频辐射噪声引起,可用于识别舰船目标。将舰船地震波简化为液固多层半无限空间低频点声源引起的地震波动问题,基于波数积分方法,通过FFP数值积分得到了海底表面声压、位移和加速度的频率特性曲线,分析了不同浅海环境对点声源海底地震波的波动特征的影响。结果表明:软质海底竖直方向加速度具有明显的低频通过特征,点声源海底地震波频域特征具有方向性;接收横距、岩土层吸收衰减系数和软硬程度、水深、沉积层厚度等均对点声源海底地震波的波动特征具有影响。  相似文献   

15.
Shear modulus imaging with 2-D transient elastography   总被引:3,自引:0,他引:3  
In previous work, we have shown that time-resolved 2-D transient elastography is a promising technique for characterizing the elasticity of soft tissues. It involves the measurement of the displacements induced by the propagation of low frequency (LF) pulsed shear waves in biological tissues. In this paper, we present a novel apparatus that contains a LF vibrating device surrounding a linear array of 128 ultrasonic transducers that performs ultrafast ultrasonic imaging (up to 10,000 frames/s) and that is able to follow in real time the propagation of a LF shear wave in the human body. The vibrating device is made of two rods, fixed to electromagnetic vibrators, that produce in the ultrasonic image area a large amplitude shear wave. The geometry has been chosen both to enhance the sensitivity and to create a quasi linear shear wave front in the imaging plane. An inversion algorithm is used to recover the shear modulus map from the spatio-temporal data, and the first experimental results obtained from tissue-equivalent materials are presented.  相似文献   

16.
Presented in this paper is a direct method of analysis of the elastic non-linear behaviour of frames. Emphasis is given to the method's capability of tracing the post-buckling path from a bifurcation point although the method can also trace the non-linear behaviour of frames with eccentricities. The method is proposed as an alternative to the main methods currently in use, the perturbation method and the incremental method. Conditions for equilibrium and stability are developed from a variational approach to the total potential. A finite element approximation is made and an efficient solution technique for the resulting non-linear equations is developed. Results for three frames are given demonstrating good agreement with solutions generated from other approaches.  相似文献   

17.
结合成灌快铁高架桥梁的噪声试验,对高架桥梁附近的噪声传播规律进行研究。实测结果表明:桥梁结构噪声以低频为主,采用线性计权进行评价更为合适;实测高架桥梁附近的噪声在100 Hz以下和800 Hz附近出现噪声峰值,前者主要为桥梁结构噪声;桥梁结构噪声主要集中在桥梁斜下方一定区域,且随横向距离的衰减较慢。将实测结果与建立的噪声简化预测模型进行比较,二者吻合较好,预测模型较好地反映了快速铁路高架桥梁附近的声场分布。  相似文献   

18.
This paper describes a new technique for two-dimensional (2-D) imaging of the motion vector at a very high frame rate with ultrasound. Its potential is experimentally demonstrated for transient elastography. But, beyond this application, it also could be promising for color flow and reflectivity imaging. To date, only axial displacements induced in human tissues by low-frequency vibrators were measured during transient elastography. The proposed technique allows us to follow both axial and lateral displacements during the shear wave propagation and thus should improve Young's modulus image reconstruction. The process is a combination of several ideas well-known in ultrasonic imaging: ultra-fast imaging, multisynthetic aperture beamforming, 1-D speckle tracking, and compound imaging. Classical beamforming in the transmit mode is replaced here by a single plane wave insonification increasing the frame rate by at least a factor of 128. The beamforming is achieved only in the receive mode on two independent subapertures. Comparison of successive frames by a classical 1-D speckle tracking algorithm allows estimation of displacements along two different directions linked to the subapertures beams. The variance of the estimates is finally improved by tilting the emitting plane wave at each insonification, thus allowing reception of successive decorrelated speckle patterns.  相似文献   

19.
In elastic-perfectly plastic frames finite zones of yielding develop under monotonically increasing loads. The classical deformation analysis assumes that the elastic rigidity reduces locally to zero at the generalized yield hinges only. Such an approach underestimates the deformations during the loading history and at collapse.A method is proposed in order to evaluate the displacements of elastic-plastic frames when the actual spread of plastic zones is included in the analysis. In comparison with the classical method the developed technique accounts for the axial and flexural stiffness variation along each beam member due to the partial yielding of cross-sections. The actual extent of plastic zones depends on the stress resultant distribution in the structure.The proposed method is based on an incremental analysis procedure formulated by means of the independent elastic-plastic kinematical compatibility equations, and casts a computeroriented technique for evaluating the influence of the finite extension of plastic zones, accounting for the interaction between axial force and bending moment, and for variable crosssections and loads along structural members.The evaluation of the stiffness reduction in the partially plastic elements is specified for Ishape cross-section and is performed according to two different concepts: (a) through an analytical evaluation of the elastic core size, by means of appropriate formulae developed for the cross-section shape under investigation; (b) through a step-wise linear rigidity variation, which requires a preliminary generation of interaction domains of equal stiffness in the space of the active stress resultants for standard profiles.The essential features of the method and those of the program application are illustrated in simple examples, showing the order of magnitude of the actual displacements in comparison with the results of the classical deformation analysis of elastic-plastic frames.  相似文献   

20.
Chen HW  Sutha S  Olson T 《Applied optics》2004,43(2):403-415
We developed spatiotemporal fusion techniques for improving target detection and automatic target recognition. We also investigated real IR (infrared) sensor clutter noise. The sensor noise was collected by an IR (256 x 256) sensor looking at various scenes (trees, grass, roads, buildings, etc.). More than 95% of the sensor pixels showed near-stationary sensor clutter noise that was uncorrelated between pixels as well as across time frames. However, in a few pixels (covering the grass near the road) the sensor noise showed nonstationary properties (with increasing or decreasing mean across time frames). The natural noise extracted from the IR sensor, as well as the computer-generated noise with Gaussian and Rayleigh distributions, was used to test and compare different spatiotemporal fusion strategies. Finally, we proposed two advanced detection schemes: the double-thresholding the reverse-thresholding techniques. These techniques may be applied to complicated clutter situations (e.g., very-high clutter or nonstationary clutter situations) where the traditional constant-false-alarm-ratio technique may fail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号