首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation process of Ba2La8(SiO4)6O2 was clarified using thermogravimetry–differential thermal analysis (TG-DTA) and a high-temperature powder X-ray diffraction (HT-XRD) method. Phase changes identified from the HT-XRD data surprisingly corresponded to the weight loss and/or endothermic peaks observed in the TG-DTA curves. Raw material with the composition Ba2La8(SiO4)6O2 was completely reacted at 1400°C and produced only an apatite-type compound without a secondary phase. Moreover, the synthesis of Ba2+ x La8− x (SiO4)6O2−δ crystals with x = 0–2 was attempted using a solid-state reaction.  相似文献   

2.
Structure of x PbO–(100− x )SiO2 ( x =25–89) glasses has been investigated by means of the X-ray and neutron diffraction and 29Si MAS NMR measurements. In the radial distribution functions of all the glasses, the Pb–O correlation was observed at 0.23 nm, indicating that the PbO3 trigonal pyramids units do exist in the whole glass forming composition range. Furthermore the existence of the first Pb–Pb correlation at ∼0.385 nm in the whole composition range suggests that the basic structural unit is considered to be a Pb2O4 unit, which consists of the edge-shared PbO3 trigonal pyramids. These results strongly imply that the Pb2O4 units participate in the glass network constructed by SiO4 tetrahedra even at low PbO content. Differing from other lead-containing glass systems, these structural characteristics of Pb ions in the PbO–SiO2 glass system are responsible for the extremely wide glass-forming region.  相似文献   

3.
The Li2O–B2O3 quasi-binary system is assessed. A two-sublattice ionic solution model, (Li1+) P (O2−, BO33−, B4O72−, B3O4.5) Q , is adopted to describe the liquid phase. All solid phases are treated as stoichiometric compounds. A set of parameters consistent with most of the available experimental data on phase diagram and thermodynamic properties is obtained by using the CALPHAD technique.  相似文献   

4.
Ionic Equilibria in Liquid Silicates   总被引:2,自引:0,他引:2  
Liquid silicates, in common with phosphates and probably other oxygen-containing inorganic polymers which are stable at high temperatures, contain in general a multitude of anionic species ranging in size and complexity from simple "monomeric" groupings such as SiO44− and P043− to continuous, cross-linked networks of infinite molecular weight. The average size and distribution of these species in binary systems may be inferred, at least approximately, from thermodynamic data in combination with polymer theory on the assumption that the activity coefficients of the constituents are arrayed in geometric series. This is equivalent to assuming ideal mixing of polymeric segments. As anticipated, deviations from the theory become significant at the gel point, which varies with the nature of the cation. The significance of these concepts in relation to the constitution of glasses is discussed. In particular, it is indicated that a glass may consist of sol and gel portions, the complexity and relative proportions of which vary with the nature of the cation and the silica content. In theory, the ion SiO44− is the most abundant single species of discrete silicate ion at all silica contents.  相似文献   

5.
We report the first measurements of the structure factor, S ( Q ), and the pair distribution function, G ( r ), of Al6Si2O13 (3:2 mullite) in the normal and supercooled liquid states in the temperature range 1776–2203 K. Measurements are obtained by synchrotron X-ray scattering on levitated, laser-heated liquid specimens. The S ( Q ) shows a prepeak at 2.0 Å−1 followed by a main peak at 4.5 Å−1 and a weak feature at 8 Å−1. The G ( r ) shows a strong (Si,Al)–O correlation at 1.80 Å at high temperature that moves to 1.72 Å as the liquid is supercooled. The second and third nearest neighbor peaks at 3.0 and 4.25 Å sharpen with supercooling. The short-range structure of the high-temperature liquid is similar to the corresponding glasses produced by rapid quenching. Supercooling causes an increase in the concentration of tetrahedral Si4+ ions, which is manifested by the large shift in the first peak to lower ionic distance, r , values in G ( r ). The increase in tetrahedrally coordinated Si4+ ions is offset by an increase in octahedral Al3+ ions. The clustering of the SiO44− tetrahedral units results in increased viscosity of the liquid at temperatures below the melting point, which is consistent with Al6Si2O13 being a fragile liquid.  相似文献   

6.
The effect of varying R =[CaO]/([CaO]+[Na2O]) ratio on the crystallization of a rare earth-rich aluminoborosilicate glass (16 wt% RE2O3, RE=Nd or La) is investigated. The crystallization of a silicate apatite with Ca2+ x RE8− x (SiO4)6O2−0.5 x composition ( x ≈0.4–0.7), is responsible for a drop of the rare earth solubility in the melt. When successive nucleation and growth stages are performed, crystallization processes change across the glass series as a consequence of glass-in-glass phase separation. An exotic phase of composition close to Ca10Nd7Si20.75O62 grows at the expense of silicate apatite.  相似文献   

7.
8.
Alumina reacts with 1 atm of SiF4 below 660°± 7°C to form A1F3 and SiO2. At higher temperatures the product is a mixture of fluorotopaz and AIF3. Mixtures of fluorotopaz and AIF3 decompose in 1 atm of SiF4 at 973°± 8°C and form tabular α-alumina. The equilibrium vapor pressure of SiF4 above mixtures of fluorotopaz and AlF3 is log p (atm) = 9.198 – 11460/ T (K). Fluorotopaz itself decomposes at 1056°± 5°C in 1 atm of SiF4 to give acicular mullite, 2Al2O3.1.07SiO2. Alumina and mullite are stable in the presence of 1 atm of SiF4 above 973° and 1056°C, respectively. The phase diagram of the system SiO2-Al2O3-SiF4 shows only gas-solid equilibria.  相似文献   

9.
Microstructural changes occurring during oxidation of the reduced form of donor-doped BaTiO3 (Ba1− X D X .Ti1− X 4+Ti X 3+O3) and during reduction of the oxidized form of donor-doped BaTiO3 (Ba1− X D X .Ti1− X /44+( V Ti) X /4O3) were studied using TEM. Samples of both types of solid solutions, containing different La concentrations (from 2 to 20 mol% La), were prepared by sintering under reducing conditions and in air, respectively. The reduced form of donor-doped BaTiO3 was oxidized by annealing at high temperatures (1150° and 1350°C) in air, while the oxidized form was reduced by annealing under reducing conditions. Because of oxidation of the reduced phase of donor-doped BaTiO3, the Ti-rich phases Ba6Ti17O40 and BaLa2Ti4O12 were precipitated. Reduction of the oxidized form caused precipitation of the Ba-rich phase Ba2TiO4 preferentially inside the matrix grains. All precipitates had well-defined orientational relationships with the perovskite matrix.  相似文献   

10.
The texture of fibrous calcium hydroxyapatite (Ca10-(PO4)6(OH)2, CaHAP) particles that were prepared by the decomposition of calcium–ethylenediaminetetraacetic acid (calcium–EDTA) chelates at 100°C under various pH conditions (pH values of 5–10) was investigated by various means. Well-crystallized fibrous CaHAPs were produced at pH .6. The stoichiometry of the CaHAPs with a chemical formula of Ca10− x (HPO4) x (PO4)6− x (OH)2− x (H2O) x was improved by increasing the decomposition pH. All the CaHAPs had unit-cell dimensions of a = 0.9436 ± 0.0003 nm and c = 0.6881 ± 0.0006 nm, exhibiting an enlarged a value. The finding of mesoporosity of CaHAPs by nitrogen gas (N2) adsorption measurement indicated that the CaHAPs were produced by an agglomeration of primary particles. Furthermore, the nonstoichiometric CaHAPs that formed at pH 6 developed ultramicropores, which were accessible to water (H2O) molecules but not to N2 molecules, by the elimination of H2O molecules that were adsorbed in interstices of primary particles in less-orderly crystallized CaHAPs and/or by dehydration of HPO42− groups. These findings by gas adsorption techniques could give evidence for the agglomeration mechanism to attain a polycrystalline CaHAP, although they exhibited good crystallinity with large size.  相似文献   

11.
The dielectric function of the ordered Ba(Mg1/3Ta2/3)O3 ceramics was investigated by the infrared reflectance spectra taken over the 50–4000-cm−1 range. The detailed crystal structure of the specimen was examined by the Rietveld method. The space group of trigonal D 3d3 and the degree of long-range order of 0.97 for Mg and Ta atomic arrangement were confirmed. The reflectance spectra were analyzed on the basis of the four-parameter semiquantum model assuming 16 infrared active vibrational modes allowed for the related D 3d3 structure. The lowest-frequency optical mode was found at 60 cm−1, which can be assumed to involve the motions of the heavy TaO6 octahedra.  相似文献   

12.
A high-pressure sampling mass spectrometer was used to detect the volatile species formed from SiO2 at temperatures between 1200° and 1400°C in a flowing water vapor/oxygen gas mixture at 1 bar total pressure. The primary vapor species identified was Si(OH)4. The fragment ion Si(OH)3+was observed in quantities 3 to 5 times larger than the parent ion Si(OH)4+. The Si(OH)3+ intensity was found to have a small temperature dependence and to increase with the water vapor partial pressure as expected. In addition, SiO(OH)+, believed to be a fragment of SiO(OH)2, was observed. These mass spectral results were compared to the behavior of silicon halides.  相似文献   

13.
14.
Transparent bulk Co2+: ZnAl2O4/SiO2 nanocomposites containing nanocrystalline Co2+: ZnAl2O4 dispersed in silica glass matrix were obtained by the sol–gel method. The gels of composition 89SiO2–6Al2O3–5ZnO− x CoO ( x =0.2, 0.4, 0.6, 0.8, 1.0) (mol%) were prepared at room temperature by using two different aluminum salts, aluminum nitrate and aluminum alkoxide (aluminum-iso-propoxide, Al(OPri)3), as starting materials. The transparent gels were converted to the crystalline phase of gahnite by heating above 900°C. The microstructural evolution of gels was characterized. The effect of Co2+ concentration on spectroscopic properties was also discussed. Co2+: ZnAl2O4 nanocrystals dispersed in the SiO2-based glass are formed at lower heat-treatment temperature and shorter heating time by using Al(OPri)3 as raw material.  相似文献   

15.
Glass-forming regions, valence states, and viscosities in SiO2–PbO systems containing various transition-metal oxides as a third component were investigated. The glasses were prepared by melting in an open atmosphere. The glass-forming regions ranged as follows: MnO≡ZnO > FeO1.5>NiO. The ratios Fe2+/(Fe2++ Fe3+) and Mn3+/ (Mn3++ Mn2+) in the glasses were determined by chemical analysis. The Fe2+/ (Fe2++ Fe3+) ratio in SiO2–PbO–FeO1.5 glasses ranged from 0.016 to 0.050. The Mn3+/ (Mn3++ Mn2+) ratio in SiO2–PbO–MnO glasses ranged from 0.056 to 0.30. The fraction of manganese (III) ions in the glasses varies considerably with the glass composition. The effects of transitionmetal oxides on the viscosity are discussed.  相似文献   

16.
The 4:1 cluster model has been considered and its application to the available experimental data for the deviation from stoichiometry, electrical conductivity, and the Seebeck coefticient has been analyzed. It has been shown that the degree of ionization of the cluster is −5. The equilibrium constant of formation is K 5= [( V Co)Co i ]5−[h˙]5 p O23/2= 4.6 exp[−167.5 (kJ)/ RT ]. It has been shown that the applicability of this model in describing CoO properties is limited to higher values of the deviation from the stoichiometric composition (y). At low y , defects in CoO can be considered as isolated. Then doubly ionized cobalt vacancies are assumed to be the predominant lattice defects. Their equilibrium constant of formation, determined from experimental data in the vicinity of the Co/CoO phase boundary by using an ideal approximation, is K V = [ V n Co][h˙]2 p o2−1/2= 3.2 × 10−4 exp[−121.1 (kJ)/ RT ]. Excellent agreement between the equilibrium constant K V determined for low p O 2 and that resulting from the Debye Hückel model within the entire range of y has been found.  相似文献   

17.
The synthesis and characterization of yttrium hydroxyl carbonate (Y(OH)CO32−) and yttrium nitrate hydroxide hydrate (Y(OH)NO3H2O) precursor materials as well as Y2O3 nanoparticles are reported. The resultant precursor particle size is about 10–12 nm with a narrow size distribution by the enzymatic decomposition method, whereas the particle size was smaller than those acquired by the homogeneous and alkali precipitation methods. The formation of Y(OH)CO32− and Y(OH)NO3H2O species was also evident from the fourier-transform infrared spectrometry (FT-IR) analysis. Precipitated Y(OH)CO32− precursors have an amorphous nature whereas Y(OH)NO3H2O precursors have a crystalline nature, which was manifested from the XRD analysis. Moreover, precipitated Y(OH)NO3H2O precursors were found in the agglomerated form and Y(OH)CO32− was established in the monodispersed form, as determined from the FE-SEM, TEM and DLS measurements. It was demonstrated that calcination of precursor materials at 900°C eventually removed the inorganic anions from the precursors and consequently produced crystalline Y2O3 nanoparticles, which was evident from the XRD and FT-IR analysis. The EDS analysis confirms Er3+ doping in the Y2O3 nanoparticles. The morphology and the size of the Y2O3 nanoparticles are almost unchanged before and after the calcination.  相似文献   

18.
The saturation surface of cassiterite, SnO2, was determined for liquids in the system K2O–Al2O3–SiO2 as a function of bulk composition and temperature. At fixed K2O/Al2O3 cassiterite solubility varies weakly with SiO2 concentration (76 to 84 mol%), temperature (1350° to 1550°C), and log ( f O2) (−0.7 to −5.3). Cassiterite solubility is also approximately independent of composition in liquids with molar ratios of K2O/Al2O3 lessthan equal to 1 (peraluminous liquids). As K2O/Al2O3 increases from 1 (peralkaline liquids), however, cassiterite solubility increases steeply and approximately linearly with K2O in excess of Al2O3. It is proposed that potassium in excess of aluminum combines with Sn4+ to form quasi-molecular complexes with an effective stoichiometry of K4SnO4.  相似文献   

19.
Er3+-doped sodium lanthanum aluminosilicate glasses with compositions of (90− x )(0.7SiO2·0.3Al2O3)· x Na2O·8.2La2O3· 0.6Er2O3·0.2Yb2O3·1Sb2O3 (in mol%) ( x = 12, 20, 24, 40, 60 mol%) were prepared and their spectroscopic properties were investigated. Judd–Ofelt analysis was used to calculate spectroscopic properties of all glasses. The Judd–Ofelt intensity parameter Ω t ( t = 2, 4, 6) decreases with increasing Na2O. Ω2 decreases rapidly with increasing Na2O while Ω4 and Ω6 decrease slowly. Both the fluorescent lifetime and the radiative transition rate increase with increasing Na2O. Fluorescence spectra of the 4 I 13/2 to 4 I 15/2 transition have been measured and the change with Na2O content is discussed. It is found that the full width at half-maximum decreases with increasing Na2O.  相似文献   

20.
The effects of substituting Nb5+ with Ta5+ on the microwave dielectric properties of the ZnNb2O6 ceramics were investigated in this study. The forming of Zn(Nb1− x Ta x )2O6 ( x =0–0.09) solid solution was confirmed by the measured lattice parameters and the EDX analysis. By increasing x , not only could the Q × f of the Zn(Nb1− x Ta x )2O6 ( x =0–0.09) solid solution be tremendously boosted from 83 600 GHz at x =0 to a maximum 152 000 GHz at x =0.05, the highest ɛr∼24.6 could also be achieved simultaneously. It was mainly due to the uniform grain morphology and the highest relative density of the specimen. A fine combination of microwave dielectric properties (ɛr∼24.6, Q × f ∼152 000 GHz at 8.83 GHz, τf∼–71.1 ppm/°C) was achieved for Zn(Nb0.95Ta0.05)2O6 solid solution sintered at 1175°C for 2 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号