共查询到16条相似文献,搜索用时 78 毫秒
1.
根据实际网络中测量得到的网络流量数据,建立一个基于Elman神经网络的流量模型,介绍Elman神经网络的架构设计,并提出一种基于正交最小二乘的学习算法,在此基础上对网络流量进行预测。仿真实验结果表明,该模型具有良好的预测效果,相对于传统线性模型及BP神经网络模型具有更高的预测精度和更好的自适应性。 相似文献
2.
针对网络系统非线性、多变量、时变性等特点,提出一种改进的Elman神经网络模型。在该模型的训练过程中引入了季节周期性学习方法,并对某高校主干网络出口流量进行实验检测。实验结果表明,该模型具有良好的预测效果,相对于传统线性模型、BP神经网络模型及标准Elman神经网络模型具有更高的预测精度和更好的自适应性。最后,通过自适应边界值方法进行检测,能够及时发现异常流量行为,说明该模型应用于网络流量预测是可行、有效的。 相似文献
3.
Elman神经网络的网络流量预测 总被引:5,自引:0,他引:5
研究网络流量准确预测问题,由于网络流量变化具有非线性、突变性,传统网络流量预测是建立在线性模型的基础上,无法准确描述网络流量变化规律,导致预测精度低.为了提高网络流量的预测精度,提出一种Elman神经网络的网络流量预测模型.根据Elman神经网络良好的时变性捕捉能力和非线性预测能力对网络流量变化规律进行建模和预测.实验结果表明,模型具有良好的预测效果,相对于传统ARIMA模型、BP神经网络模型,Elman神经网络模型预测精度更高,误差更小,说明了改进的优化方法对网络流量预测是有效和可行的. 相似文献
4.
5.
针对静态前馈网络和Elman网络在软测量建模中的不足,提出了一种新的改进的Elman网络模型,并将此模型应用于精馏塔出口成分含量的软测量建模中。实验模拟结果表明:改进的Elman网络模型具有更高的预测精度和较快的收敛速度,能够更好地实现精馏塔出口成分含量的软测量建模,为进一步实现产品质量控制提供了保证。 相似文献
6.
在Elman神经网络的基础上提出了改进的网络,根据实际网络中测量的网络流量数据,建立了基于Elman神经网络的流量模型,分别用Elman神经网络和改进的Elman神经网络对实际网络流量进行预测,仿真实验结果表明,改进的Elman神经网络具有良好的预测效果,改进的Elman神经网络具有更高的预测精度和更好的动态性能. 相似文献
7.
为提高Elman神经网络的诊断效率,对OHF Elman神经网络进行研究。在OHF Elman网络基础上引入收益因素,提出改进的OHFElman神经网络,并将其应用于齿轮箱的故障诊断。建立了改进OHFElman神经网络和OHF Elman神经网络两种模型,并对这两种模型进行了仿真。一系列训练与测试结果表明,基于改进OHF Elman网络的齿轮箱故障诊断系统能够提高故障诊断的准确率和效率,可以应用在实际工程故障诊断中,为故障诊断技术提供了一种更有效的方法。 相似文献
8.
9.
10.
网络流量预测的建模与仿真研究 总被引:4,自引:0,他引:4
研究网络流量准确预测问题,网络流量变化是一种具有时变性、多尺度和突发性的非线性系统,由于传统时间序列预测方法很难揭示内在变化规律,导致网络流量的预测精度比较低.为了提高网络流量的预测精度,提出一种小波分析BP神经网络的网络流量预测模型.模型首先通过小波分析对网络流量进行分解,得到网络流量信号的近似和细节部分,然后进行重构提取多尺度特征,最后将重构的网络流量数据输入到BP神经网络,利用BP神经网络的非线性能力对网络流量进行训练、建模并预测.仿真结果表明,小波神经网络方法提高了网络流量预测精度,是一种有效实用的网络流量预测方法. 相似文献
11.
优化Elman神经网络用于网络流量预测 总被引:2,自引:0,他引:2
对量子粒子群优化(QPSO)算法进行研究,提出了自适应量子粒子群优化(Adaptive QPSO)算法,用于优化Elman神经网络的参数,改进了Elman神经网络的泛化能力.利用网络流量时间序列数据进行预测,实验结果表明,采用AQPSO算法优化获得的Elman神经网络模型不但具有较强的泛化能力,而且具有良好的稳定性,在网络流量时间序列数据的预测中具有一定的实用价值. 相似文献
12.
Elman神经网络是一种典型的递归神经网络。提出了自适应量子粒子群优化(Adaptive Quantum-Behaved Particle Swarm Optimization,AQPSO)算法,用于训练Elman网络参数,改进了Elman网络的泛化能力。利用中集集团股票数据进行预测,实验结果表明,采用AQPSO算法获得的Elman网络模型不但具有很强的泛化能力,而且具有良好的稳定性,在股票数据预测中具有一定的实用价值。 相似文献
13.
基于Elman神经网络的股票价格预测研究 总被引:9,自引:0,他引:9
为了更好地把握股票价格的波动,应用了在处理序列数据输入输出具有优越性的Elman 递归神经网络建立股市预测模型,并用两支股票进行了检测,检测结果说明人工神经网络应用于中国股票市场的预测是可行和有效的,有着良好的前景。 相似文献
14.
15.
提出了一种改进Elman动态回归神经网络,在此基础上建立了一种网络流量预测模型,该模型相对于传统的线性模型和BP神经网络模型具有更高的预测精度和更好的自适应性,利用某大学校园网统计得到的实际网络流量数据进行仿真实验,结果表明该模型具有良好的预测效果。 相似文献
16.
分析了网络传输时延的组成和特点,提出了利用Elman神经网络预测网络传输时延,运用Matlab软件对其预测进行仿真,结果证明Elman神经网络能很好地预测网络时延,为了进一步提高神经网络的逼近能力和动态特性,提出了一种改进的基于输入层、隐藏层、输出层神经元的动态递归神经网络。实验证明,改进的Elman神经网络比原来的网络具有更好的动态性能。 相似文献