首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A one-dimensional char combustion model including pore structure effects is used to numerically investigate single char particle combustion for several different types of char samples. Previously, it is expected that small char particles have less combustion time. However, the present work shows that this is true only if the combustion time is defined as that needed for a char particle diameter diminished below a certain value. If the combustion time is defined as time needed for the carbon conversion ratio higher than a certain value, there are optimal particle sizes in a limited combustion period. Just reducing the char particle sizes may not get high carbon conversion ratios. It has also been found that, in general, the larger particles have higher temperatures at the exterior surfaces.  相似文献   

2.
A simulation model of continuous lignite char combustion in a spouted bed has been developed to predict bed oxygen concentrations, bed particle size distribution, bed carbon loading, mean diameter of bed char, and the fractional combustion in spout, annulus, and fountain. The approach involves taking into account the spouted bed hydrodynamics, a burning law for individual particles, and the combines mass balances for bed char and oxidant in the three typical regions. The predicted results for various operating conditions are compared with some experimental data.  相似文献   

3.
A model for the release of sodium during the combustion of single Loy Yang brown coal char particles is presented. The model is combined with further analysis of recently published measurements of the release of sodium from single brown coal particles burning in a flat flame to estimate the rate constant for sodium release as a function of burnout time for these experiments. A char combustion and heat transfer model is also used to predict the char burnout behaviour and surface temperature of the particle as a function of time during combustion for each of the experiments. By combining the predicted time–temperature history of the particles with the estimated rate constant for sodium release, an Arrhenius expression for the release of sodium during char combustion is determined as:A full mechanism for sodium release during the various stages of coal combustion is also proposed. Utilising the proposed mechanism, the rate-determining step for sodium release during char combustion is proposed to be the formation of a reduced form of sodium in the char which subsequently leads to the rapid loss of sodium from the particle.  相似文献   

4.
A model that predicts the physical changes that pulverized coal char particles undergo during combustion has been developed. In the model, a burning particle is divided into a number of concentric annular volume elements. The mass loss rate, specific surface area, and apparent density in each volume element depend upon the local particle conditions, which vary as a consequence of the adsorbed oxygen and gas-phase oxygen concentration gradients inside the particle. The model predicts the particle's burning rate, temperature, diameter, apparent density, and specific surface area as combustion proceeds, given ambient conditions and initial char properties. A six-step heterogeneous reaction mechanism is used to describe carbon reactivity to oxygen. A distributed activation energy approach is used to account for the variation in desorption energies of adsorbed O-atoms on the carbonaceous surface. Model calculations support the three burning zones established for the oxidation of pulverized coal chars. The model indicates two types of zone II behavior, however. Under weak zone II burning conditions, constant-diameter burning occurs up to 30% to 50% conversion before burning commences with reductions in both size and apparent density. Under strong zone II conditions, particles burn with reductions in both size and apparent density after an initial short period (<2% conversion) of constant-diameter burning. Model predictions reveal that early in the oxidation process, there is mass loss at constant diameter under all zone II burning conditions. Such weak and strong burning behavior cannot be predicted with the commonly used power-law model for the mode of burning employing a single value for the burning mode parameter. Model calculations also reveal how specific surface area evolves when oxidation occurs in the zone II burning regime. Based on the calculated results, a surface area submodel that accounts for the effects of pore growth and coalescence during combustion under zone I conditions was modified to permit the characterization of the variations in specific surface area that occur during char conversion under zones II conditions. The modified surface area model is applicable to all burning regimes. Calculations also indicate that the particle's effectiveness factor varies during conversion under zone II burning conditions. With the adsorption/desorption mechanism employed, a near first-order Thiele modulus-effectiveness factor relationship is obeyed over the particle's lifetime.  相似文献   

5.
A char combustion model suitable for a large-scale boiler/gasifier simulation, which considers the variation of physical quantities in the radial direction of char particles, is developed and examined. The structural evolution within particles is formulated using the basic concept of the random pore model while simultaneously considering particle shrinkage. To reduce the computational cost, a new approximate analytical boundary condition is applied to the particle surface, which is approximately derived from the Stefan–Maxwell equations. The boundary condition showed reasonably good agreement with direct numerical integration with a fine grid resolution by the finite difference method under arbitrary conditions. The model was applied to combustion in a drop tube furnace and showed qualitatively good agreement with experiments, including for the burnout behavior in the late stages. It is revealed that the profiles of the oxygen mole fraction, conversion, and combustion rate have considerably different characteristics in small and large particles. This means that a model that considers one total conversion for each particle is insufficient to describe the state of particles. Since our char combustion model requires only one fitting parameter, which is determined from information on the internal geometry of char particles, it is useful for performing numerical simulations.  相似文献   

6.
7.
In this paper, we present results from a new detailed physical model for single black liquor droplet pyrolysis and swelling, and validate them against experimental data from a non-oxidizing environment using two different reactor configurations.

In the detailed model, we solve for the heat transfer and gas phase mass transfer in the droplet and thereby, the intra-particle gas–char and gas–gas interactions during drying and devolatilization can be studied. In the experimental part, the mass change, the swelling behaviour, and the volume fraction of larger voids, i.e. cenospheres in the droplets were determined in a non-oxidizing environment. The model gave a good correlation with experimental swelling and mass loss data. Calculations suggest that a considerable amount of the char can be consumed before the entire droplet has experienced the devolatilization and drying stages of combustion. Char formed at the droplet surface layer is generally consumed by gasification with H2O flowing outwards from the droplet interior. The extent of char conversion during devolatilization and the rate of devolatilization are greatly affected by swelling and the formation of larger voids in the particle. The more the particle swells and the more homogeneous the particle structure is, the larger is the conversion of char at the end of devolatilization.  相似文献   


8.
《能源学会志》2019,92(5):1502-1518
The steam gasification characteristics of coal char produced two sub-bituminous coals of different origin have been investigated through modelling and experiments. The gasification experiments are carried out in an Isothermal mass loss apparatus over the temperature range of 800–900 °C using a gas mixture of 65% steam and 35% N2. A fully transient single particle gasification model, based on the random pore model, is developed incorporating reaction kinetics, heat and mass transport inside the porous char particle and the gas film. Stefan-Maxwell equation and Knudson diffusion are incorporated in the multi-component diffusion of species and pore diffusion. The model is validated with the experimental data of the present authors as well as that reported in the literature. The particle centre temperature is found to increase, then decrease and increase again to reach the reactor temperature finally, and the trend is more prominent for the larger particles. The pore opening phenomenon is more evident in SBC2 char, leading to a final char porosity of 0.65 vis-à-vis 0.52 in SBC1 and making it more reactive. Temporal evolution of contours of carbon conversion and concentration of other gaseous species like steam, H2O, H2, CO and CO2 in the particle are computed to investigate the gasification process. A higher temperature is found to favour both the rate peak and the total production of H2 for both the chars. The total H2 production from SBC2 char is found to be 0.0189 mol and 0.0236 mol at 800 and 850 °C, while the same for SBC1 char is0.0232 mol and 0.0290 mol respectively. The reaction follows the shrinking core model at the outset, shifting to the shrinking reactive core model subsequently.  相似文献   

9.
The two-dimensional laminar combustion characteristics of coal particles at various oxygen concentration levels of a surrounding gas have been numerically investigated. The numerical simulations, which use the two-step global reaction model to account for the surrounding gas effect, show the detailed interaction among the inter-spaced particles, undergoing devolatilization and subsequent char burning. Several parametric studies, which include the effects of gas temperature (1700 K), oxygen concentration, and variation in geometrical arrangement of the particles on the volatile release rate and the char burning rate, have been carried out. To address the change in the geometrical arrangement effect, multiple particles are located at various inter-spacings of 4–20 particle radii in both streamwise and spanwise directions. The results for the case of multiple particles are compared with those for the case of a single particle. The comparison indicates that the shift to the multiple particle arrangement resulted in the substantial change of the combustion characteristics and that the volatile release rate of the interacting coal particles exhibits a strong dependency on the particle spacing. The char combustion rate is controlled by the level of oxygen concentration and gas composition near particles during combustion. The char combustion rate is highly dependent on the particle spacing at all oxygen levels. The correlations of the volatile release rate and the change in total mass of particles are also found.  相似文献   

10.
针对燃煤链条炉排工业锅炉的燃烧过程中床层内部存在复杂的传热、传质及物理化学反应过程等特点开发了三维床层和炉膛耦合的燃烧数值计算模型,模型包含了煤燃烧过程中水分蒸发、挥发析出、气相反应、焦炭燃烧和传热传质等基本的化学物理过程,同时考虑了大粒径煤颗粒内部的非等温传热特性,并通过实验测试与数值模拟对数值模型进行校核,实验结果与模型计算吻合得较好,从而验证了计算模型的准确性。燃煤链条炉排工业锅炉燃烧数值模型的建立为实现燃煤工业锅炉的优化设计和运行指导提供了先进的设计手段和理论支持。  相似文献   

11.
Though the two-phase theory of fluidization is well-accepted, no direct experimental measurements of the different gas concentrations predicted to occur in bubble and particulate phases could be found in the literature. For the first time, theoretical predictions of these different gas concentrations have been validated experimentally, using a combined oxygen/bubble probe. Based on the two-phase theory, a mathematical model was developed for the combustion of a batch of char particles in a fluidized-bed combustor. The experimental oxygen concentration in the particulate phase as a function of time was well predicted by the model. Slight discrepancies for the bubble phase values were eliminated when low-oxygen-concentration bubbles were excluded from the data, attributed to some char combustion occurring in bubbles being contrary to the model assumption. The temperature difference between char and bed particles (ΔT) was the only adjustable parameter in the model. A value of 20°C fitted the burnoff times measured by visual observation of the top of the bed, for both 5 and 10 g char batch masses. Model predictions of the oxygen concentrations were not sensitive to ΔT during the first half of burnoff, when mass transfer controlled the combustion rate, so the mass transfer processes were predicted correctly by the model effectively with no adjustable parameter. The ΔT value of 20°C was significantly lower than experimental measurements of maximum burning char particle temperatures, reported to be 70°C for the small-diameter bed particles used in this work. The discrepancy was attributed to two factors: (i) the decrease in char particle temperature towards the end of the burnoff, when kinetics significantly affected the combustion rate; and (ii) a lower char particle temperature in the particulate phase than in the bubble phase, with experimental char particle temperature measurements biased towards the higher bubble phase values. It was inferred: (i) that the maximum values of ΔT measured experimentally are too high for calculation of the char particle combustion rate during the kinetic-controlled latter stage of burnoff and (ii) that reported values of the heat transfer coefficient from burning char particles to the particulate phase deduced from these particle temperature measurements may have been underestimated.  相似文献   

12.
For accurate modeling of the coal combustion process at elevated pressures, account must be made for variations in char-particle structure. As pressure is increased, particle swelling increases during the devolatilization of certain bituminous coals, yielding a variety of char-particle structures, from uniform high-density particles to thin-walled non-uniform low-density particles having large internal void volumes. Since under Zone II burning conditions the char conversion rate depends upon the accessibility of the internal surfaces, the char structure plays a key role in determining particle burnout times. In our approach to characterize the impact of char structure on particle burning rates, effectiveness factors appropriate for thin-walled cenospherical particles and thick-walled particles having a few large cavities are defined and related to the effectiveness factor for uniform high-density particles that have no large voids, only a random distribution of pores having a mean pore size in the sub-micron range. For the uniform case, the Thiele modulus approach is used to account for Zone II type burning in which internal burning is limited by the combined effects of pore diffusion and the intrinsic chemical reactivity of the carbonaceous material. In the paper, the impact of having a variety of char structures in a mix of particles burning under Zone II burning conditions is demonstrated.  相似文献   

13.
In this paper the results of a complete set of devolatilization and combustion experiments performed with pulverized (∼500 μm) biomass in an entrained flow reactor under realistic combustion conditions are presented. The data obtained are used to derive the kinetic parameters that best fit the observed behaviors, according to a simple model of particle combustion (one-step devolatilization, apparent oxidation kinetics, thermally thin particles). The model is found to adequately reproduce the experimental trends regarding both volatile release and char oxidation rates for the range of particle sizes and combustion conditions explored. The experimental and numerical procedures, similar to those recently proposed for the combustion of pulverized coal [J. Ballester, S. Jiménez, Combust. Flame 142 (2005) 210-222], have been designed to derive the parameters required for the analysis of biomass combustion in practical pulverized fuel configurations and allow a reliable characterization of any finely pulverized biomass. Additionally, the results of a limited study on the release rate of nitrogen from the biomass particle along combustion are shown.  相似文献   

14.
The paper provides an overview of current studies on the behaviour of coal during devolatilization, especially the experimental studies and modelling efforts on the formation of char structure of bituminous coals in the open literature. Coal is the most abundant fossil fuel in the world. It dominates the energy supply in the future and plays an increasing role particularly in the developing countries. Coal utilization processes such as combustion or gasification generally involve several steps: i.e., the devolatilization of organic materials, homogeneous reactions of volatile matter with the reactant gases and heterogeneous reactions of chars with the reactant gases. The devolatilization process exerts its influence throughout the life of the solid particles from the injection to the burnout, therefore is the most important step which needs to be understood. When volatile matter is generated, the physical structure of a char changes significantly during the devolatilization, some accompanying a particle's swelling. The complexity of a char's structure lies in the facts that the structure of a char itself is highly heterogenous inside an individual particle and between different particles and the chemistry of a char is strongly dependent on the raw coal properties. A char's structure is strongly dependent on the heating conditions such as temperature, heating rate and pressure. Understanding the swelling of coal and the formation of char's pore structure during the devolatilization of pulverized coal is essential to the development of advanced coal utilization technologies. During combustion and gasification of pulverized coal, the behaviour of individual particles differs markedly due to the variation of their maceral composition. Particles with different maceral constituents generate different types of char structure. The structure of a char has a significant impact on its subsequent heterogeneous reactions and ash formation. The review also covers the most recent studies carried out by the authors, including the experimental observations of the thermoplastic behaviour of individual coal particles from the density fractions using a single-particle reactor, the experimental analysis on chars prepared in a drop tube furnace using the density-separated coal samples, the development of a mathematical model for the formation of char's pore structure based on a simplified multi-bubble mechanism and the investigation on the effect of pressure on char formation in a pressurized entrained-flow reactor.  相似文献   

15.
This article presents a numerical study on the effect of pressure on the gasification performance of an entrained flow tubular gasifier for Australian and Indian coals. Gasification using a substoichiometric amount of air, with or without steam addition, is considered. The model takes into account phenomena such as devolatilization, combustion of volatiles, char combustion, and gasification. Continuous-phase conservation equations are solved in an Eulerian frame and those of the particle phase are solved in a Lagrangian frame, with coupling between the two phases carried out through interactive source terms. The numerical results obtained show that the gasification performance increases for both types of coal when the pressure is increased. Locations of devolatilization, combustion, and gasification zones inside the gasifier are analyzed using the temperature plots, devolatilization plots, and mass depletion histories of coal particles. With increase in pressure, the temperature inside the gasifier increases and also the position of maximum temperature shifts upstream. For the high-ash Indian coal, the combustion of volatiles and char and the gasification process are relatively slower than those for the low-ash Australian coal. The mole fractions of CO and H2 are found to increase with increase in pressure, in all the cases considered. Further, the effects of pressure on overall gasification performance parameters such as carbon conversion, product gas heating value, and cold gas efficiency are also discussed for both types of coals.  相似文献   

16.
In the present work, the combustion of a single char particle in quiescent and convective environments is investigated numerically. Fully resolved CFD calculations are carried out considering heterogeneous reactions at the particle surface and detailed homogeneous reactions in the gas phase. Unity and non-unity Lewis number diffusion modeling approaches are employed and compared to each other. The flame shape of the particle in a quiescent atmosphere shows full symmetry whereas the particle in the convective environment exhibits a stagnation region upstream of the particle and a wake region downstream of the particle. The detailed CFD results are used to analyze the flame structure around the char particle and corresponding flamelet simulations are carried out. For the presently investigated case, curvature effects of mixture fraction, species and temperature are found to be significant in almost all the cases. These curvature effects correspond to diffusion tangential to iso-surfaces of mixture fraction. To describe these processes, new extended flamelet equations are derived. The individual terms in the flamelet equations are analyzed for both the quiescent and the convective environment based on the CFD data and the results confirm the importance of tangential diffusion. Except for the quiescent environment and unity Lewis numbers, curvature cannot be neglected for the investigated char combustion case. For all other cases, significant differences between the standard flamelet model and the detailed CFD results are found. On the other hand, applying the extended flamelet equations yields very good agreement with the CFD results.  相似文献   

17.
Group combustion of char/carbon particles   总被引:3,自引:0,他引:3  
Extensive literature exists for the experimental data on coal/char ignition and combustion. While most of the experiments are performed with a cloud or stream of particles, the theoretical modeling used to compare and interpret the experimental data is based on the individual particle combustion (IPC) model. As opposed to individual particle modeling, a group combustion (GC) theory is proposed for the combustion modeling of char/carbon particles. For a cloud of liquid drops, the group behavior implies the formation of a flame (group flame) around a large number of drops rather than a flame around each drop. More generally, the group behavior for a cloud of particles represents the change in the burning characteristics due to collective behavior of particles with or without a group flame. To gain a basic understanding of the group behavior, a model such as the analysis of a spherically symmetric cloud of particles burning in quiescent air is presented here. Each particle within the cloud produces CO, due to both the oxidation of C to CO and the reduction of CO2 to CO which subsequently oxidizes to CO2 in the homogeneous gas phase.

Generalized results for the burning rate and the flame structure are given as a function of group combustion number (G). Predicted results show unexpected results including the independence of the burning rate of CO kinetics. Quantitative results for both the cases of frozen and fast CO kinetics are given. There is a group flame for the case of fast CO kinetics. It is shown that the group flame occurs at G > 5 while for a cloud of liquid drops, the group flame occurs at G > 0.1. The higher critical group combustion number is attributed to the lower burning rate of particle inside the cloud compared to the burning rate of liquid drops inside the cloud. The results show that there exists mainly three modes of combustion: (i) Individual Particle Combustion (IPC, low G), (ii) Group Combustion (GC, intermediate G) and (iii) Sheath Combustion (SC, high G). Criteria are given for identifying the mode of combustion from the experimental conditions. The criteria and the establishment of modes of combustion are independent of the extent of CO kinetics. It is found that the experimental data, obtained with a stream of particles and commonly interpreted with the IPC model, indicate the combustion modes to vary from IPC to SC modes. These data are now reinterpreted with the group theory.  相似文献   


18.
For oxy-combustion with flue gas recirculation, elevated levels of CO2 and steam affect the heat capacity of the gas, radiant transport, and other gas transport properties. A topic of widespread speculation has concerned the effect of gasification reactions of coal char on the char burning rate. To asses the impact of these reactions on the oxy-fuel combustion of pulverized coal char, we computed the char consumption characteristics for a range of CO2 and H2O reaction rate coefficients for a 100 μm coal char particle reacting in environments of varying O2, H2O, and CO2 concentrations using the kinetics code SKIPPY (Surface Kinetics in Porous Particles). Results indicate that gasification reactions reduce the char particle temperature significantly (because of the reaction endothermicity) and thereby reduce the rate of char oxidation and the radiant emission from burning char particles. However, the overall effect of the combined steam and CO2 gasification reactions is to increase the carbon consumption rate by approximately 10% in typical oxy-fuel combustion environments. The gasification reactions have a greater influence on char combustion in oxygen-enriched environments, due to the higher char combustion temperature under these conditions. In addition, the gasification reactions have increasing influence as the gas temperature increases (for a given O2 concentration) and as the particle size increases. Gasification reactions account for roughly 20% of the carbon consumption in low oxygen conditions, and for about 30% under oxygen-enriched conditions. An increase in the carbon consumption rate and a decrease in particle temperature are also evident under conventional air-blown combustion conditions when the gasification reactions are included in the model.  相似文献   

19.
《Combustion and Flame》2014,161(2):612-619
Studies have shown that both char particle diameter and apparent density vary during char conversion at high temperatures. To account for such variations, power-law expressions have been used to correlate rp/rp,0 and ρp/ρp,0 with mp/mp,0. The parameters in these relations are constants, thus this approach fails to account for variations in the functional relationship between mass, size, and apparent density as mass conversion proceeds. To overcome this limitation, a model for the mode of particle conversion has been developed that permits the variation in size and apparent density with mass loss to depend upon the Thiele modulus, which varies during char conversion. The rate with which the particle radius decreases is shown to be given by the ratio of the time derivative and the spatial derivative of the particle density at the surface of the particle. The model presented can be used to describe the mode of conversion of reactive porous particles in a range of different applications such as entrained flow gasifiers, pulverized coal burners and circulating fluidized bed combustors. There are no free tunable parameters in the model.  相似文献   

20.
A model of the combustion of a porous carbon particle in oxygen is developed. The model considers heat and mass transfer in both the gas phase above the particle’s surface and inside the porous particle. The conditions for the model having a solution have been determined by solving the diffusion equation in the gas phase around the particle. Two regimes of particle combustion have been analyzed: 1) the regime when carbon reacts with oxygen in the all volume of the particle, and 2) the regime with carbon reacting with oxygen in a layer at the particle’s exterior. Both carbon monoxide and carbon dioxide can be formed in the first regime, but carbon monoxide can only be formed in the second regime. The conditions for each regime of particle combustion are determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号