首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
4‐(4′‐Aminophenyl)‐1,2,4‐triazolidine‐3,5‐dione ( 1 ) was reacted with 1,8‐naphthalic anhydride ( 2 ) in a mixture of acetic acid and pyridine (3 : 2) under refluxing temperature and gave 4‐(4′‐N‐1,8‐naphthalimidophenyl)‐1,2,4‐triazolidine‐3,5‐dione ( NIPTD ) ( 3 ) in high yield and purity. The compound NIPTD was reacted with excess n‐propylisocyanate in N,N‐dimethylacetamide solution and gave 1‐(n‐propylamidocarbonyl)‐4‐[4′‐(1,8‐naphthalimidophenyl)]‐1,2,4‐triazolidine‐3,5‐dione ( 4 ) and 1,2‐bis(n‐propylamidocarbonyl)‐4‐[4′‐(1,8‐naphthalimidophenyl)]‐1,2,4‐ triazolidine‐3,5‐dione ( 5 ) as model compounds. Solution polycondensation reactions of monomer 3 with hexamethylene diisocyanate ( HMDI ), isophorone diisocyanate ( IPDI ), and tolylene‐2,4‐diisocyanate ( TDI ) were performed under microwave irradiation and conventional solution polymerization techniques in different solvents and in the presence of different catalysts, which led to the formation of novel aliphatic‐aromatic polyureas. The polycondensation proceeded rapidly, compared with conventional solution polycondensation, and was almost completed within 8 min. These novel polyureas have inherent viscosities in a range of 0.06–0.20 dL g?1 in conc. H2SO4 or DMF at 25°C. Some structural characterization and physical properties of these novel polymers are reported. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2861–2869, 2003  相似文献   

2.
4‐Cyclohexylurazole (1) R = cyclohexyl (CHU) was prepared from cyclohexyl isocyanate in two steps. Polycondensation reactions of compound CHU with hexamethylene diisocyanate (HMDI), isophorone diisocyanate (IPDI), and toluene‐2,4‐diisocyanate (TDI) were performed in DMAc/chloroform and DMAC in the presence of pyridine as a catalyst. The resulting novel polyureas have an inherent viscosity in the range of 0.044–0.206 g/dL in DMF at 25°C. These polyureas were characterized by IR, 1H–NMR, elemental analysis, and TGA. The resulting polymers are soluble in most organic solvents. Some physical properties and structural characterization of these novel polyureas are reported. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1335–1341, 2001  相似文献   

3.
4‐(4′‐Aminophenyl)‐1,2,4‐triazolidine‐3,5‐dione was reacted with 1 mol of acetyl chloride in dry N,N‐dimethylacetamide (DMAc) at ?15°C and 4‐(4′‐acetamidophenyl)‐1,2,4‐triazolidine‐3,5‐dione [4‐(4′‐acetanilido)‐1,2,4‐triazolidine‐3,5‐dione] (APTD) was obtained in high yield. The reaction of the APTD monomer with excess n‐isopropylisocyanate was performed at room temperature in DMAc solution. The resulting bis‐urea derivative was obtained in high yield and was finally used as a model for the polymerization reaction. The step‐growth polymerization reactions of monomer APTD with hexamethylene diisocyanate, isophorone diisocyanate, and tolylene‐2,4‐diisocyanate were performed under microwave irradiation and solution polymerization in the presence of pyridine, triethylamine, or dibutyltin dilaurate as a catalyst. Polycondensation proceeded rapidly, compared with conventional solution polycondensation; it was almost completed within 8 min. The resulting novel polyureas had an inherent viscosity in the range of 0.07–0.17 dL/g in dimethylformamide or sulfuric acid at 25°C. These polyureas were characterized by IR, 1H‐NMR, elemental analysis, and thermogravimetric analysis. The physical properties and structural characterization of these novel polyureas are reported. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2103–2113, 2004  相似文献   

4.
4‐(4′‐Methoxyphenyl)urazole (MPU) was prepared from 4‐methoxybenzoic acid in five steps. The reaction of monomer MPU with n‐isopropylisocyanate was performed at room temperature in N,N‐dimethylformamide solution, and the resulting bis‐urea derivative was obtained in high yield and was finally used as a model for polymerization reaction. The step‐growth polymerization reactions of monomer MPU with hexamethylene diioscyanate, isophorone diioscyanate, and toluene‐2,4‐diioscyanate were performed in N,N‐dimethylacetamide solution in the presence of pyridine as a catalyst. The resulting novel polyureas have an inherent viscosity (ηinh) in a range of 0.07–0.21 dL/g in DMF and sulfuric acid at 25°C. These polyureas were characterized by IR, 1H‐NMR, elemental analysis, and TGA. Some physical properties and structural characterization of these novel polyureas are reported. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1141–1146, 2002  相似文献   

5.
4‐(4′‐Aminophenyl)urazole (AmPU) was prepared from 4‐nitrobenzoic acid in six steps. The reaction of monomer AmPU with n‐isopropylisocyanate was performed in N,N‐dimethylacetamide solutions at different ratios, and the resulting disubstituted and trisubstituted urea derivatives were obtained in high yields and were finally used as models for polymerization reactions. The step‐growth polymerization reactions of AmPU with hexamethylene diisocyanate, isophorone diisocyanate, and toluene‐2,4‐diisocyanate were performed in N‐methylpyrrolidone solutions in the presence of pyridine as a catalyst. The resulting novel polyureas had inherent viscosities of 0.11–0.18 dL/g in dimethylformamide at 25°C. These polyureas were characterized with IR, 1H‐NMR, elemental analysis, and thermogravimetric analysis. Some physical properties and structural characterization of these novel polyureas are reported. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2692–2700, 2003  相似文献   

6.
To investigate the CF3 group affecting the coloration and solubility of polyimides (PI), a novel fluorinated diamine 1,1‐bis[4‐(4‐amino‐2‐ trifluoromethylphenoxy)phenyl]‐1‐phenylethane (2) was prepared from 1,1‐ bis(4‐hydrophenyl)‐1‐phenylethan and 2‐chloro‐5‐nitrobenzotrifluoride. A series of light‐colored and soluble PI 5 were synthesized from 2 and various aromatic dianhydrides 3a–f using a standard two‐stage process with thermal 5a– f(H) and chemical 5a–f(C) imidization of poly(amic acid). The 5 series had inherent viscosities ranging from 0.55 to 0.98 dL/g. Most of 5a–f(H) were soluble in amide‐type solvents, such as N‐methyl‐2‐pyrrolidone (NMP), N,N‐ dimethylacetamide (DMAc), and N,N‐dimethylformamide (DMF), and even soluble in less polar solvents, such as m‐Cresol, Py, Dioxane, THF, and CH2Cl2, and the 5(C) series was soluble in all solvents. The GPC data of the 5a–f(C) indicated that the Mn and Mw values were in the range of 5.5–8.7 × 104 and 8.5–10.6 × 104, respectively, and the polydispersity index (PDI) Mw /Mn values were 1.2–1.5. The PI 5 series had excellent mechanical properties. The glass transition temperatures of the 5 series were in the range of 232–276°C, and the 10% weight loss temperatures were at 505–548 °C in nitrogen and 508–532 °C in air, respectively. They left more than 56% char yield at 800°C in nitrogen. These films had cutoff wavelengths between 356.5–411.5 nm, the b* values ranged from 5.0–71.1, the dielectric constants, were 3.11–3.43 (1MHz) and the moisture absorptions were in the range of 011–0.40%. Comparing 5 containing the analogous PI 6 series based on 1,1‐bis[4‐(4‐aminophenoxy)phenyl]‐1‐ phenylethane (BAPPE), the 5 series with the CF3 group showed lower color intensity, dielectric constants, and better solubility. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2399–2412, 2005  相似文献   

7.
Novel sulfobetaines were synthesized from two urethanes derived from 2,4‐tolylene diisocyanate (TDI) blocked with 2‐hydroxyethyl methacrylate (HEMA) and either N,N‐dimethylaminopropylamine (DMAPA) or N,N‐dimethylaminoethanolamine (DMAEA). The first‐stage reaction of TDI with HEMA was carried out in petroleum ether heterogeneously with the precipitation of the intermediate monoadduct product in the reaction solution. The second stage is a homogeneous reaction of the monoadduct with the blocking agent, DMAPA or DMAEA, in tetrahydrofuran (THF). In both reactions, an inhibitor, hydroquinone, and a catalyst, dibutyltin diacetate (DBDAc), were used. The tertiary amine urethanes were quaternized by 1,3‐propane sultone to form the two novel sulfobetaines. The results of the elemental analysis of those products along with their 1H‐NMR and IR spectra indicated that these materials were, indeed, the compounds expected. The products dissolved in strongly polar organic solvents. The copolymerization of these two monomers with comonomers such as styrene, methyl methacrylate, acrylamide, and HEMA was investigated. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 3447–3459, 2001  相似文献   

8.
A new diamine 5,5′‐bis[4‐(4‐aminophenoxy)phenyl]‐hexahydro‐4,7‐methanoindan ( 3 ) was prepared through the nucleophilic displacement of 5,5′‐bis(4‐hydroxylphenyl)‐hexahydro‐4,7‐methanoindan ( 1 ) with p‐halonitrobenzene in the presence of K2CO3 in N,N‐dimethylformamide (DMF), followed by catalytic reduction with hydrazine and Pd/C in ethanol. A series of new polyamides were synthesized by the direct polycondensation of diamine 3 with various aromatic dicarboxylic acids. The polymers were obtained in quantitative yields with inherent viscosities of 0.76–1.02 dl g−1. All the polymers were soluble in aprotic dipolar solvents such as N,N‐dimethylacetamide (DMAc) and N‐methyl‐2‐pyrrolidone (NMP), and could be solution cast into transparent, flexible and tough films. The glass transition temperatures of the polyamides were in the range 245–282 °C; their 10% weight loss temperatures were above 468 °C in nitrogen and above 465 °C in air. © 2000 Society of Chemical Industry  相似文献   

9.
This article deals with the synthesis and characterization of novel polyurethanes (PUs) by the reaction between two aromatic diisocyanates (4,4′‐diphenylmethane diisocyanate and tolylene 2,4‐diisocyanate) and two aliphatic diisocyanates (isophorone diisocyanate and hexamethylene diisocyanate) with N1,N4‐bis[(4‐hydroxyphenyl)methylene]succinohydrazide, which acted as hard segment. UV–vis, FTIR, 1H NMR, 13C NMR, and DSC/TGA analytical technique has been used to determine the structural characterization and thermal properties of the hard segmented PUs. X‐ray diffraction revealed that PUs contained semicrystalline and amorphous regions that varied depending upon the nature of the backbone structures. PUs were soluble in polar aprotic solvents. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
Pyromellitic dianhydride (benzene‐1,2,4,5‐tetracarboxylic dianhydride) (1) was reacted with several amino acids in acetic acid and the resulting imide‐acid [N,N′‐(pyromellitoyl)‐bis‐L ‐amino acid diacid] (4a–4d) was obtained in high yield. The direct polycondensation reaction of these diacids with 4,4′‐thiobis(2‐tert‐butyl‐5‐methylphenol) (5) was carried out in a system of tosyl chloride(TsCl), pyridine, and N,N‐dimethyl formamide (DMF) to give a series of novel optically active poly(esterimide)s. Step‐growth polymerization was carried out by varying the time of heating and the molar ratio of TsCl/diacid, and the optimum conditions were achieved. These new chiral polymers were characterized with respect to chemical structure and purity by means of specific rotation experiments, FTIR, 1H‐NMR, X‐ray diffraction, elemental, and thermogravimetric analysis (TGA) field emission scanning electron microscopy (FE‐SEM) techniques. These polymers are readily soluble in many polar organic solvents like DMF, N,N‐dimethyl acetamide, dimethyl sulfoxide, N‐methyl‐2‐pyrrolidone, and protic solvents such as sulfuric acid. TGA showed that the 10% weight loss temperature in a nitrogen atmosphere was more than 390°C; therefore, these new chiral polymers have useful levels of thermal stability associated with good solubility. Furthermore, study of the surface morphology of the obtained polymers by FE‐SEM showed that each polymers exhibit nanostructure morphology. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
4‐(4‐dimethylaminophenyl)‐1,2,4‐triazolidine‐3,5‐dione ( DAPTD ) was prepared from 4‐dimethylaminobenzoic acid in five steps. The compound DAPTD was reacted with excess acetyl chloride in N,N‐dimethylacetamide (DMAc) solution and gave 1,2‐bisacetyl‐4‐[4‐(dimethylaminophenyl)]‐1,2,4‐triazolidine‐3,5‐dione as a model compound. Solution polycondensation reactions of monomer with succinyl chloride (SucC), suberoyl chloride (SubC), and sebacoyl chloride (SebC) were performed under conventional solution polymerization techniques in the presence of triethylamine and pyridine as a catalyst in N‐methylpyrrolidone (NMP) and led to the formation of novel aliphatic polyamides. These novel polyamides have inherent viscosities in the range of 0.09–0.21 dL/g in N,N‐dimethylformamide (DMF) at 25°C. Fluorimetric studies of the model compound as well as polymers were performed. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 947–954, 2007  相似文献   

12.
A series of novel ternary‐copolymer of fluorinated polyimides (PIs) were prepared from 1,4‐bis(4‐amino‐2‐trifluoromethylphenoxy)benzene (pBATB), commercially available aromatic dianhydrides, and aromatic diamines via a conventional two‐step thermal or chemical imidization method. The structures of all the obtained PIs were characterized with FTIR, 1H‐NMR, and element analysis. Besides, the solubility, thermal stability, mechanical properties, and moisture uptakes of the PIs were investigated. The weight‐average molecular weight (Mw) and the number‐average molecular weight (Mn) of the PIs were determined using gel‐permeation chromatography (GPC). The PIs were readily dissolved not only in polar solvents such as DMF, DMAc, and NMP, but also in some common organic solvents, such as acetic ester, chloroform, and acetone. The glass transition temperatures of these PIs ranged from 201 to 234°C and the 10% weight loss temperatures ranged from 507 to 541°C in nitrogen. Meanwhile, all the PIs left around 50% residual even at 800°C in nitrogen. The GPC results indicated that the PIs possessed moderate‐to‐high number‐average molecular weight (Mn), ranging from 9609 to 17,628. Moreover, the polymer films exhibited good mechanical properties, with elongations at break of 8–21%, tensile strength of 66.5–89.8 MPa, and Young's modulus of 1.04–1.27 GPa, and low moisture uptakes of 0.54–1.13%. These excellent combination properties ensure that the polymer could be considered as potential candidates for photoelectric and microelectronic applications. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
In this investigation, a new method for step-growth polymerization reactions of 4-phenylurazole ( PHU ) and 4-(4-methoxyphenyl)urazole ( MPU ) with various diisocyanates were developed under solvent-free conditions. The reaction of these monomers with hexamethylene diisocyanate ( HMDI ), isophorone diisocyanate ( IPDI ), and tolulyene-2,4-diisocyanate ( TDI ) were performed in the presence or absence of dibutyltin dilaurate ( DBTDL ) as a catalyst. The results of polymerization revealed that DBTDL did not have considerable effect on the polymerization process. The resulting polyureas showed good yields and moderate inherent viscosities ranging of 0.17–0.30 dL/g in N,N-dimethylformamide (DMF) at 25°C. They are soluble in most polar organic solvents. All of the above polymers were characterized by 1H-NMR, FTIR spectroscopy, and thermogravimetric analysis (TGA). This method was compared with the polymerization reaction in N,N-dimethylacetamide as a solvent via solution polymerization. Under solvent-free conditions, higher yields and inherent viscosities were obtained. In addition, in this method we do not need to use any solvents and the polymerization reaction can be classified as a green and environmentally friendly method. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

14.
The reaction of 4‐(3‐hydroxynaphthalene)‐1,2,4‐triazolidine‐3,5‐dione ( 3HNTD ) with n‐propylisocyanate was performed at different molar ratios. The resulting monosubstituted urea and disubstituted urea‐urethane derivatives were obtained in high yields and were used as model compounds for polymerization reactions. 3HNTD as a monomer was used in the preparation of heterocyclic poly(urea‐urethane)s to produce photoactive polymers, by polycondensation with different diisocyanates in N,N‐dimethylacetamide (DMAc) solution. Chromophoric heterocyclic polymers containing naphthalene group, obtained in quantitative yields, possessed inherent viscosities in the range of 0.14–0.38 dL/g. The resulting poly(urea‐urethane)s is insoluble in most organic solvents, but easily soluble in polar solvents such as dimethyl sulfoxide (DMSO), DMAc, and N‐methylpyrrolidone (NMP). The polymers were characterized by IR, 1H‐NMR, elemental analysis, and TGA. Fluorimetric and UV–vis studies of the monomer as well as polymers were performed. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
Four novel types of polyurethanes (PUs) were prepared from N1,N2‐bis[(4‐hydroxyphenyl)methylene]ethanedihydrazide with two aromatic diisocyanates (4,4′‐diphenylmethane diisocyanate and tolylene 2,4‐diisocyanate) and two aliphatic diisocyanates (isophorone diisocyanate and hexamethylene diisocyanate). The chemical structure of both diol and PUs was confirmed by UV–vis, fluoroscence, FTIR, 1H NMR, and 13C NMR spectral data. DSC data show that PUs have multiple endotherm peak. X‐ray diffraction revealed that the PUs contained semicrystalline and amorphous regions that varied with the nature of the backbone structures. PUs were soluble in polar aprotic solvents. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
4‐(4′‐Aminophenyl)urazole (AmPU) was prepared from 4‐nitrobenzoic acid in six steps. The reaction of AmPU with acetyl chloride was performed in N,N‐dimethylacetamide solutions at different ratios, and the resulting disubstituted and trisubstituted amide derivatives were obtained in high yields and were used as models for polymerization reactions. Polycondensation reactions of AmPU with succinyl chloride, suberoyl chloride, and sebacoyl chloride were performed with conventional solution polymerization techniques in the presence of different catalysts, such as pyridine, triethylamine, and dibutyltin dilaurate, and led to the formation of novel aliphatic polyamides. The resulting novel polyamides had inherent viscosities of 0.11–0.22 dL/g in dimethylformamide or H2SO4 at 25°C. These polyamides were characterized with IR, 1H‐NMR, elemental analysis, and thermogravimetric analysis. Some physical properties and structural characterization of these novel polyamides are reported. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3173–3185, 2004  相似文献   

17.
A new class of optically active poly(amide imide)s were synthesized via direct polycondensation reaction of diisocyanates with a chiral diacid monomer. The step‐growth polymerization reactions of monomer bis(p‐amido benzoic acid)‐N‐trimellitylimido‐L‐leucine (BPABTL) (5) as a diacid monomer with 4,4′‐methylene bis(4‐phenylisocyanate) (MDI) (6) was performed under microwave irradiation, solution polymerization under gradual heating and reflux condition in the presence of pyridine (Py), dibuthyltin dilurate (DBTDL), and triethylamine (TEA) as a catalyst and without a catalyst, respectively. The optimized polymerization conditions according to solvent and catalyst for each method were performed with tolylene‐2,4‐diisocyanate (TDI) (7), hexamethylene diisocyanate (HDI) (8), and isophorone diisocyanate (IPDI) (9) to produce optically active poly(amide imide)s by the diisocyanate route. The resulting polymers have inherent viscosities in the range of 0.09–1.10 dL/g. These polymers are optically active, thermally stable, and soluble in amide type solvents. All of the above polymers were fully characterized by IR spectroscopy, 1H NMR spectroscopy, elemental analyses, specific rotation, and thermal analyses methods. Some structural characterization and physical properties of this new optically active poly(amide imide)s are reported. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1647–1659, 2004  相似文献   

18.
New hole transport polymers have been synthesized by condensation polymerization of 4‐tolyldiphenylamine (TDPA) with various types of aldehyde. The reaction conditions have been investigated to yield polymers with high molecular weight. It is found that the molecular weight and yield of the TDPA–aldehyde polymers strongly depend on the electron donor–acceptor nature of the substituent on the aromatic ring of the aldehyde monomer. Structural characterization by 1H NMR spectroscopy shows that the addition condensation reaction occurs exclusively at the para position of TDPA. The electrochemical and optical properties of polymers have been investigated by cyclic voltammetry and UV–vis spectroscopy. Cyclic voltammograms of all polymers show well‐defined pairs of reduction and oxidation peaks, indicating that the polymers are electrochemically active. All polymers show low conductivities of magnitude 10?14 S cm?1. Differential scanning calori‐metry measurements reveal that TDPA–aldehyde polymers exhibit glass transitions in the range 170–230 °C. These polymers possess good solubility and the films show sufficient morphological stability. © 2001 Society of Chemical Industry  相似文献   

19.
A new monomer 1,1‐bis(4‐amino‐3‐mercaptophenyl)‐4‐tert‐butylcyclohexane dihydrochloride, bearing the bulky pendant 4‐tert‐butylcyclohexylidene group, was synthesized from 4‐tert‐butylcyclohexanone in three steps. Its chemical structure was characterized by 1H NMR, 13C NMR, MS, FTIR, and EA. Aromatic poly(bisbenzothiazole)s (PBTs V) were prepared from the new monomer and five aromatic dicarboxylic acids by direct polycondensation. The inherent viscosities were in the range of 0.63–2.17 dL/g. These polymers exhibited good solubility and thermal stability. Most of the prepared PBTs V were soluble in various polar solvents. Thermogravimetric analysis showed the decomposition temperatures at 10% weight loss that were in the range of 495–534°C in nitrogen. All the PBTs V, characterized by X‐ray diffraction, were amorphous. The UV absorption spectra of PBTs V showed a range of λmax from 334 to 394 nm. All the PBTs V prepared had evident fluorescence emission peaks, ranging from 423 to 475 nm with different intensity. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2000–2008, 2006  相似文献   

20.
A novel fluorinated diamine monomer, 2,2‐bis[4‐(4‐amino‐2‐trifluoromethylphenoxy)phenyl]propane (2), was prepared through the nucleophilic substitution reaction of 2‐chloro‐5‐nitrobenzotrifluoride with 2,2‐bis(4‐hydroxyphenyl)propane in the presence of potassium carbonate, followed by catalytic reduction with hydrazine and Pd/C. Polyimides were synthesized from diamine 2 and various aromatic dianhydrides 3a–f via thermal imidization. These polymers had inherent viscosities ranging from 0.73 to 1.29 dL/g. Polyimides 5a–f were soluble in amide polar solvents and even in less polar solvents. These films had tensile strengths of 87–100 MPa, elongations to break of 8–29%, and initial moduli of 1.7–2.2 GPa. The glass transition temperatures (Tg) of 5a–f were in the range of 222–271°C, and the 10% weight loss temperatures (T10) of them were all above 493°C. Compared with polyimides 6 series based on 2,2‐bis[4‐(4‐aminophenoxy)phenyl]propane (BAPP) and polyimides 7 based on 2,2‐Bis[4‐(4‐aminophenoxy)phenyl]hexafluoropropane (6FBAPP), the 5 series showed better solubility and lower color intensity, dielectric constant, and lower moisture absorption. Their films had cutoff wavelengths between 363 and 404 nm, b* values ranging from 8 to 62, dielectric constants of 2.68–3.16 (1 MHz), and moisture absorptions in the range of 0.04–0.35 wt %. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 922–935, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号