首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of silane grafting and water crosslinking reactions on crystallizations, melting behaviors, and dynamic mechanical properties of the LDPE/LLDPE blends are investigated using DSC and DMA. From DSC data, cocrystallization of LDPE and LLDPE does not occur, but cocrosslinking of these two polymers is evidenced at the experimental temperature of 100°C, a temperature lower than melting temperatures of both polymers. The water crosslinking reactions of the LLDPE‐rich blends enable development of a new phase having a melting endotherm in between that of LDPE and LLDPE. From the thermal fractionation data, interaction between LDPE and LLDPE is observed, and compatibilization of the blends can be achieved by the crosslinking reactions. From DMA data, the storage moduli of the blends are not found to be consistent with their degrees of crosslinking. The storage moduli of the blends are not simply determined by the degree of crosslinking but determined by very complicated but unclear factors. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1808–1816, 2001  相似文献   

2.
Factors—including time, temperature, morphology, and thickness of sample, the extent of silane grafting, and water concentration—that affect the rate and degree of water crosslinking reactions of the silane‐grafted LDPE are investigated. The gel content of the water‐crosslinked sample increases with increasing time, temperature, and water concentration, but with decreasing content of the crystalline component in the sample and thickness of the sample. The relationship between the gel content and the crosslinking time is dependent on thickness and morphology of the sample, and the extent of silane grafting in the sample. The crosslinking rates and the resultant gel content are inversely proportional to the content of crystalline component of the sample, suggesting that the crosslinking reactions occur mainly in the amorphous domain of the sample. For those samples with high resultant gel contents, the crystallizations of the samples are significantly enhanced by crosslinking when the gel contents are higher than about 40%, leading to a dual relationship between the gel contents of the samples and the crosslinking times. For low temperatures, the rate‐determining step of the crosslinking reactions is the diffusion of water, rather than the hydrolysis and the subsequent condensation reactions of the silyl trimethoxy groups. For high temperatures and high extents of silane grafting in the samples, however, the chemical reactions dominate the crosslinking process. The overall activation energy of the crosslinking reactions is dependent on thickness of the sample. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 186–196, 2001  相似文献   

3.
Thermal fractionations performed using differential scanning calorimetry (DSC) to characterize the heterogeneities in molecular structures of low‐density polyethylene (LDPE), silane‐grafted LDPE (G‐LDPE), and silane‐grafted water‐crosslinked LDPE with gel fractions of 30 and 70 wt % are reported. In regular DSC analyses, LDPE, G‐LDPE, and the low gel fraction of crosslinked samples (30 wt %) give one broad endothermic peak at ~110 °C, whereas the high gel fraction of crosslinked samples (70 wt %) give overlapped multiple endothermic peaks in a much broader temperature range. After thermally fractionated in the range 60–145 °C, LDPE, G‐LDPE, and the low gel fraction samples give five to six endothermic peaks in the low‐temperature range, whereas the high gel fraction samples give nine peaks, with three additional peaks appearing in the high‐temperature range. These multiple peaks correspond to fractions of different molecular structures, with the additional peaks for the high gel fraction samples corresponding to the fraction of molecular segments with low or no branching. This fraction of molecular segments is increasingly extruded out of the gel region with increasing gel fraction by crosslinking and leads to an enhancement of crystallization of the sample. This crystallization enhancement behavior is also demonstrated by the X‐ray diffraction data and polarized optical micrographs. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 591–599, 2001  相似文献   

4.
The melt grafting of unsaturated silanes onto powdered polypropylene (PP) in a Haake TW100 twin‐screw extruder and curing in hot water were studied. The influence of grafting formulations and extrusion conditions on the melt flow rates of grafted PP and the gel percentages of crosslinked PP was investigated. The gel percentages of methacryloylpropyltrimethoxysilane (VMMS)‐grafted PP were markedly higher than those of vinyltriethoxysilane (VTES)‐ and vinyltrimethoxysilane (VTMS)‐grafted PP, while significantly less degradation of PP during grafting was observed for VMMS‐grafted PP. When benzoyl peroxide (BPO) was used as an initiator, no degradation of PP during grafting was observed, and the melt flow rates of grafted PP decreased with increasing BPO concentration. In contrast, use of dicumyl peroxide (DCP) as an initiator resulted in severe degradation of PP, and the melt flow rates of grafted PP increased gradually with increasing DCP concentration. BPO resulted in higher gel percentages than those of DCP at a fixed initiator concentration. Introduction of styrene into the grafting system greatly improved the gel percentage of crosslinked PP and reduced the degradation of PP during grafting. The optimum molar ratio of styrene to monomer is at about 1.5:1. Relatively low processing temperatures and high screw speeds are favorable. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1233–1238, 2000  相似文献   

5.
The crystallization of a series of low‐density polyethylene (LDPE)‐ and linear low‐density polyethylene (LLDPE)‐rich blends was examined using differential scanning calorimetry (DSC). DSC analysis after continuous slow cooling showed a broadening of the LLDPE melt peak and subsequent increase in the area of a second lower‐temperature peak with increasing concentration of LDPE. Melt endotherms following stepwise crystallization (thermal fractionation) detailed the effect of the addition of LDPE to LLDPE, showing a nonlinear broadening in the melting distribution of lamellae, across the temperature range 80–140°C, with increasing concentration of LDPE. An increase in the population of crystallites melting in the region between 110 and 120°C, a region where as a pure component LDPE does not melt, was observed. A decrease in the crystallite population over the temperature range where LDPE exhibits its primary melting peaks (90–110°C) was noted, indicating that a proportion of the lamellae in this temperature range (attributed to either LDPE or LLDPE) were shifted to a higher melt temperature. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1009–1016, 2000  相似文献   

6.
A novel processing method of combining dynamic vulcanization with the silane‐grafted water‐crosslinking technique to improve the comprehensive properties of polyethylene (PE) is reported. PE was grafted with vinyl triethoxysilane (VTEO) first, and then, N,N,N,N′‐ tetragylcidyl‐4,4′‐diaminodiphenylmethane epoxy resin was dynamically cured in a PE‐g‐VTEO matrix through a twin‐screw extruder to prepare PE‐g‐VTEO/epoxy blends. Polyethylene‐graft‐maleic anhydride (PE‐g‐MAH) was used as a compatibilizer to improve the interaction between PE‐g‐VTEO and the epoxy resin. The results show that the novel processing method improved the strength, stiffness, and toughness of the blends, especially the heat resistance of the blends, by the addition of the dynamically cured epoxy resin as the reinforcement. PE‐g‐MAH increased the compatibility between PE‐g‐VTEO and the epoxy resin, which played an important role in the improvement of the comprehensive properties of the blends. In addition, after treatments in both hot air and hot water, the comprehensive properties of blends were further improved, thanks to the further curing reaction of epoxy with PE‐g‐VTEO. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
The effects of linear low density polyethylene (LLDPE) grafting with vinyltrimethoxysilane by different types and contents of peroxide were studied. When grafting silane onto LLDPE, with 0.10 phr of Dicumyl peroxide (DCP) or 0.05 phr content of 2,5‐Dimethyl‐2,5‐di (tert‐butyl‐peroxy)‐hexane (DHBP), it was found that the grafting effect was improved; however, as Di(2‐tert‐butylperoxypropyl ‐(2))‐benzene (DIPP) or excess DHBP was used, LLDPE was supposed to cause self‐crosslinking, which reduced the grafting effect of silane and was invalid in the processing of extrusion. In this study, vinyl trimethoxysilane (VTMS) was grafted onto various polyethylenes (HDPE, LLDPE, and LDPE) using DCP as an initiator in a twin screw extruder. The grafted polyethylenes were able to crosslink utilizing water as the crosslinking agent. The effects of varied crosslinking time on the mechanical properties of the crosslinked polyethylenes were studied. It was found that the HDPE and LLDPE were apt to crosslink during the grafting process and thus decreased the grafting ratio. Multiple melting behavior was observed for crosslinked LDPE and LLDPE. Mechanical and thermal properties of the crosslinked PE are much better than that of uncrosslinked PE. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2383–2391, 2005  相似文献   

8.
Shrinkage studies were conducted on silane‐grafted moisture crosslinkable linear low‐density polyethylene (LLDPE) insulation stripped from extrusion‐coated copper conductors. The insulation, which possesses orientation imparted during melt processing, showed remarkable levels of shrinkage when heated above the melting point of the polymer, though the shrinkage can be greatly reduced by moisture crosslinking the insulation below the melting point of the LLDPE. Shrinkage along the direction of orientation was accompanied by swelling in the other dimensions. Differential scanning calorimetry (DSC) revealed several trends, including a decrease in both melting point and degree of crystallinity with increasing crosslinking. In the first heat after annealing, crosslinked samples exhibited a shoulder in the DSC endotherm several degrees below the normal melting point of the LLDPE. In agreement with prior studies in silane‐grafted HDPE, relaxation of orientation by annealing appeared to result in an increase in the enthalpy of melting. The degree of shrinkage was also found to be dependent on the insulation thickness, which is attributed to faster cooling in thinner insulation immediately following extrusion coating. The results highlight the extensive built in stresses that can be frozen into polymer layers in fabricated articles due to melt orientation. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
Plasma pretreatment has been used to generate reactive radicals and oxygenated groups on polymer surfaces for graft polymerization. The polymer substrates studied were composed of a polypropylene–polyethylene (PP–PE) copolymer, which was predominantly PP, and also contained blended ethylene–propylene rubber (EPR) as either about 15 or about 60 mol %. A pure PP substrate was also studied for comparison. The grafted polymer was polystyrene (PS). Raman microspectroscopic 2‐dimensional mapping was used to elucidate the role of crystallinity and EPR in the plasma treatment and graft polymerization process. It was found that the plasma pretreatment favored the EPR component of the substrate and the graft yield was related to the EPR content. Crystallinity seemed to have a much less significant effect on the grafting reaction. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1643–1652, 2003  相似文献   

10.
Reactions of vinyl trimethoxysilane grafting onto low-density polyethylene (LDPE) were investigated using Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermal gravimetric analysis. The silane grafting reactions were induced by a fixed amount of dicumyl peroxide at 0.2 part of reagent per hundred parts with respect to LDPE. Fourier transform infrared data demonstrated that the extent of the silane grafting reaction was increased as the amount of silane used, the reaction time, or the reaction temperature was increased. The apparent activation energy of the silane grafting reaction was 9.7 kJ mol−1. Differential scanning calorimetry was used to follow the silane grafting reactions in situ at a heating rate of 20°C per minute. The silane grafting reaction was exothermic starting at about 150°C and ending at about 230°C, indicating a completion of the reaction in 4 min. The grafting reaction heat has linear relations to the amount of silane used. The grafting reaction heat of about 1 J/g of sample was generated during reaction per part of reagent per hundred parts of silane used. The reaction heat of silane grafting onto LDPE per mol of silane used was 14.5 kJ mol−1 silane, and the reaction heat of peroxide that reacted with LDPE was −12 kJ mol−1 peroxide. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 255–261, 1998  相似文献   

11.
Morphology and rheological properties of low‐density polyethylene/linear low‐density polyethylene/thermoplastic starch (LDPE/LLDPE/TPS) blends are experimentally investigated and theoretically analyzed using rheological models. Blending of LDPE/LLDPE (70/30 wt/wt) with 5–20 wt % of TPS and 3 wt % of PE‐grafted maleic anhydride (PE‐g‐MA) as a compatibilizer is performed in a twin‐screw extruder. Scanning electron micrographs show a fairly good dispersion of TPS in PE matrices in the presence of PE‐g‐MA. However, as the TPS content increases, the starch particle size increases. X‐ray diffraction patterns exhibit that with increase in TPS content, the intensity of the crystallization peaks slightly decreases and consequently crystal sizes of the blends decrease. The rheological analyses indicate that TPS can increase the elasticity and viscosity of the blends. With increasing the amount of TPS, starch particles interactions intensify and as a result the blend interface become weaker which are confirmed by relaxation time spectra and the prediction results of emulsion Palierne and Gramespacher‐Meissner models. It is demonstrated that there is a better agreement between experimental rheological data and Coran model than the emulsion models. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44719.  相似文献   

12.
Polyethylene is a useful material in numerous applications, such as packaging, fuel tanks as well as oil and gas pipes. However, it must be considered that polyethylene is permeable to gases and liquids. Small molecules, such as hydrocarbons, may permeate through the material and cause environmental problems. Consequently, a particular aspect of polymer materials is the requirement of a high permeation resistance against low‐molecular‐weight hydrocarbons. Modifications of the commonly used polyethylene material are necessary to achieve adjusted permeation properties. In this contribution, the effect of electron‐beam crosslinking of polyethylene on the resulting permeation characteristics was investigated. Polyethylene sheets were processed and crosslinked by irradiation with high energy electrons. The formation of a network structure was characterized by gel content determination and by rheological measurements. The permeation properties of the polymer sheets were assessed by a gravimetric method. It is demonstrated that—as a result of the crosslinking process—the permeation of low molecular weight hydrocarbon through polyethylene is reduced with respect to the chain length of the aliphatic substances. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44968.  相似文献   

13.
Water treeing is one of the main deterioration phenomena observed in the polymeric insulation of extruded crosslinked polyethylene (XLPE) cables, which can affect the service life of power cables. In this work, we investigated the effect of grafting of a silane (vinyl trimethoxysilane, VTMS) on the resistance of XLPE to water treeing. A series of water‐treeing tests, the mechanical and dielectric measurements indicated that the silane‐grafting could significantly improve the water tree resistance of the conventional XLPE cable insulation with little influences on its dielectric properties, e.g., the dielectric breakdown strength, dielectric constant and loss tangent, and its mechanical performance. It was found that there exists an optimum value of VTMS concentration (about 0.6 phr) corresponding to the minimum water tree length. The water tree resistance mechanism of silane‐grafted XLPE was proposed on the basis of the process of silane hydrolysis and crosslinking. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
以纯度为40%的双叔丁基过氧化二异丙基苯为交联剂、异氰尿酸三烯丙酯为助交联剂,研究了动态硫化的温度和转速对于聚烯烃弹性体/聚丙烯(POE/PP)共混物的性能以及异氰尿酸三烯丙酯的用量对于POE/PP共混物的性能和转矩的影响。结果表明,POE/PP共混物的拉伸强度、扯断伸长率和300%定伸应力都随动态硫化温度的升高而先增大后减小,撕裂强度随动态硫化温度的升高而减小,动态硫化温度为180℃时的总体力学性能较好;随着动态硫化转速的提高,POE/PP共混物的拉伸强度和300%定伸应力都先增大后减小,扯断伸长率减小,撕裂强度则增大,动态硫化的转速为50 r/min时共混物的总体力学性能较好。助交联剂异氰尿酸三烯丙酯的加入明显提高了POE/PP共混物动态硫化时的转矩,其用量以1份(质量)为宜。  相似文献   

15.
Thin films were blown from a composition of 75% linear low density polyethylene (LLDPE) and 25% LDPE. The LLDPE content was made up of different % of metallocene‐based and conventional octene‐based LLDPE. Tensile strength, dart impact strength, hot tack strength, heat seal strength, and the barrier properties of these films were measured. All the properties showed significant improvement when conventional LLDPE (cLLDPE) was replaced by metallocene‐based LLDPE (mLLDPE), even to the extent of only 25%. The blends of 50% mLLDPE and 50% LDPE showed attractive properties. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 53–57, 2001  相似文献   

16.
Radiation crosslinking of polymer blends containing the ethylene–propylene terpolymer (EPDM) and polypropylene (PP) was studied. Four binary systems with mixing ratios of 80/20, 60/40, 40/60, and 20/80 w/w and the individual components were γ‐processed. The development of the gel content formed in irradiated blends proved that the increase in PP concentration generated an increasing insoluble fraction. A linear dependence of the gel fraction on PP concentration was found. The optimal dose range for the efficient crosslinking of all EPDM/PP blends was 40–180 kGy. The use of PP customer waste was also examined. The thermal stability of the studied mixtures was assessed in order to state the contribution of the components to the radiation compatibilization of investigated polymers. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 982–987, 2000  相似文献   

17.
A natural rubber latex, an acrylonitrile–butadiene rubber latex, and their 50: 50 blends were exposed to an electron beam in air. A polyfunctional monomer, ethoxylated pentaerythritol tetraacrylate, was used as a crosslinking promoter. Cast films from the irradiated systems were characterized for their gel contents, swelling properties, and tensile strength. An increase in the radiation dose from 0 to 500 kGy resulted in increased crosslinking, as measured by an increase in the gel content and better swelling resistance. The effect of the polyfunctional monomer, ethoxylated pentaerythritol tetraacrylate, as a crosslinking promoter was studied with infrared spectros copy. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1206–1214, 2007  相似文献   

18.
Silane‐crosslinked polypropylene (PP) has been prepared first by the grafting of silane onto the backbone of PP in a melt process and then by crosslinking in warm water. The effects of type and concentration of silane and peroxide on the silane grafting on PP were investigated. The thermal behavior of the silane‐crosslinked PP was studied by thermogravimetric (TG) and differential scanning calorimetry (DSC) methods. TG results show that PP prepared via silane crosslinking increases its thermal stability greatly. It has been found from DSC measurements that the crystallization temperatures, ie the onset temperature and peak temperature of the exotherm of the silane‐crosslinked PP, increase compared with those of the pure PP. The silane crosslinking hardly changes the crystallinity degree of PP. The crystallization behavior of the silane‐crosslinked PP was also studied by wide‐angle X‐ray diffraction analysis. Copyright © 2004 Society of Chemical Industry  相似文献   

19.
In the investigation of the course of degradation and build‐up reactions during the decomposition of the tert‐butyl perbenzoate (TBPB) (at eight different concentrations) in isotactic polypropylene (iPP), it was found that, at the beginning of the peroxide decomposition at all investigated peroxide concentrations from 4.62–200 mmol/kg iPP, the degradation reactions of iPP prevailed. At the TBPB concentration of ≤37.0 mmol/kg iPP during the whole period of peroxide decomposition, degradation reactions leading to a lower of molecular mass of PP prevailed. But at higher peroxide concentrations of TBPB ≥74.4 mmol/kg iPP and at the later stage of peroxide decomposition, a predominance of the build‐up reactions, that is, an increase the molecular mass, was observed. The degradation and build‐up reactions were determined from the measurements of the melting‐flow indexes of the peroxide‐treated iPP samples. The reaction mechanism of the degradation and build‐up reactions in iPP is discussed. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 886–893, 2000  相似文献   

20.
Moderate cross‐linked blend (LLDPE‐PP) of linear low‐density polyethylene (LLDPE) and polypropylene (PP) with benzoyl peroxide (BPO) were prepared by the reactive melt mixing in HAAKE mixer. Effect of LLDPE‐PP as compatibilizer on the morphology, crystallization behavior and mechanical properties of LLDPE/PP (87/13) blends were studied using scanning electron microscopy (SEM), polarized optical microscopy (POM), wide‐angle X‐ray diffraction (WAXD), differential scanning calorimetry (DSC) and mechanical testing machines. The results showed that LLDPE‐PP not only improved the interfacial adhesion between the LLDPE and PP but also acted as selective nucleating agent for crystal modification of PP. In the blends, the sizes of LLDPE and PP spherulites became smaller, and their melting enthalpies reduced in the presence of LLDPE‐PP. Furthermore, the mechanical properties of LLDPE/PP blends were improved with the addition of LLDPE‐PP, and when the concentration of LLDPE‐PP was 2 phr, the ternary blend had the best mechanical properties. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号