首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structure-mechanical properties of heat-induced whey protein isolate/cassava starch (WPI/CS) gels were studied by hot-stage video microscopy (HSVM) and axial compression testing (ACT). Elastic moduli (or compression stress) of pure WPI and CS gels followed a power dependence with concentration. ACT confirmed that reinforcement occurred when CS was added at 10–25% of total solids. HSVM revealed that CS granules swelled first, removed water from the system and concentrated the WPI solution that gelled later. Reinforced gels had a continuous WPI phase filled with swollen CS granules. A modified Takayanagi model accounting for water redistribution during gelatinization accurately fitted the mechanical properties of these gels.  相似文献   

2.
Whey protein isolate (WPI) was subjected to limited tryptic hydrolysis and the effect of the limited hydrolysis on the rheological properties of WPI was examined and compared with those of untreated WPI. At 10% concentration (w/v in 50 mM TES buffer, pH 7.0, containing 50 mM NaCl), both WPI and the enzyme-treated WPI (EWPI) formed heat-induced viscoelastic gels. However, EWPI formed weaker gels (lower storage modulus) than WPI gels. Moreover, a lower gelation point (77 °C) was obtained for EWPI as compared with that of WPI which gelled at 80 °C only after holding 1.4 min. Thermal analysis and aggregation studies indicated that limited proteolysis resulted in changes in the denaturation and aggregation properties. As a consequenece, EWPI formed particulated gels, while WPI formed fine-stranded gels. In keeping with the formation of a particulate gel, Texture Profile Analysis (TPA) of the heat-induced gels (at 80 °C for 30 min) revealed that EWPI gels possessed significantly higher (p < 0.05) cohesiveness, hardness, gumminess, and chewiness but did not fracture at 75% deformation. The results suggest that the domain peptides, especially β-lactoglobulin domains released by the limited proteolysis, were responsible for the altered gelation properties.  相似文献   

3.
《Food Hydrocolloids》2006,20(5):678-686
The effects of heating rate and xanthan addition on the gelation of a 15% w/w whey protein solution at pH 7 and in 0.1 M phosphate buffer were studied using small-amplitude oscillatory shear (SAOS) rheological measurements and uniaxial compression tests. WPI solutions were heated from 25 to 90 °C at five heating rates (0.1, 1, 5, 10 and 20 °C/min). Gelation temperature of WPI decreased with decreasing of heating rates and with xanthan addition. Under uniaxial compression, the WPI gels prepared with no more than 0.2% w/w xanthan exhibited distinct fracture point and were tougher (i.e. higher fracture stress and fracture strain) than the gels prepared with no less than 0.5% w/w xanthan. In general, the fracture strain of WPI gels increased with heating rate, though not significantly, at all xanthan contents investigated. However, the fracture stress of WPI gels, generally, decreased with heating rate when xanthan content was 0–0.2% and increased with heating rate when xanthan content was 0.5 and 1%.  相似文献   

4.
The objective of this study was to investigate the rheological, thermal and microstructural properties of whey protein isolate (WPI)‐hydroxypropylated cassava starch (HPCS) gels and WPI‐cross‐linked cassava starch (CLCS) gels at different pH values (5.75, 7.00 and 9.00). The rheological results showed that the WPI‐modified starch gels had greater storage modulus (G?) values than the WPI‐native cassava starch gels at pH 5.75 and 7.00. Differential scanning calorimetry curves suggested that the phase transition order of the WPI and modified starch changed as the pH increased. Scanning electron microscopy images showed that the addition of HPCS and CLCS contributed to the formation of a compact microstructure at pH 5.75 and 7.00. A comprehensive analysis showed that the gelling properties of the WPI‐modified starch were affected by the difference between the WPI denaturation temperature and modified starch gelatinisation temperature and by the granular properties of the modified starch during gelatinisation. These results may contribute to the application of WPI‐modified starch mixtures in food preparation.  相似文献   

5.
Mixed gels of cassava starch (CS) and a whey protein isolate (WPI), obtained by heating solutions of 10% total solids, pH 5.75 to 85°C, were characterized as a function of the starch fraction, θs, by axial compression, small-amplitude oscillatory rheometry, differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Gelation did not occur for θs > 0.7. In the range 0<θs < 0.4 mixed gels showed higher mechanical (E, elastic modulus) and rheological (G′, storage modulus) properties than pure gels, with maximum values for θs= 0.2–0.3. Viscoelastic measurements as a function of time showed that gels containing higher levels of WPI developed a larger G. Blends of both biopolymers showed independent thermal transitions in DSC measurements, related to gelatinization and denaturation. Microstructure of a mixed gel formed at θs= 0.2 showed a continuous matrix formed by strands of WPI particle aggregates and an independent CS phase.  相似文献   

6.
The objective of the present work was to investigate the effect of the heating process on the structural and rheological properties of whey protein isolate/cross-linked waxy maize starch (WPI/CWMS) blends depending upon the concentration and the starch/whey protein ratio. Starch concentration ranged from 3 to 4% (w/w) and the protein content was of 0.5, 1 and 1.5% (w/w). The blend (pH 7, 100 mM ionic strength) was heated using a jacketed vessel at two pasting temperatures: 90 and 110 °C. The particle size distribution of the WPI suspension (1.5%) displayed three distinct classes of aggregates (0.3, 65 and 220 μm), whereas the size of swollen starch granules varied from 48 to 56 μm according to the pasting temperature. When the two components were mixed together, the peak attributed to swollen starch granules was attenuated and broadened towards higher values (up to 88 μm) due to protein aggregates (260–410 μm). This effect was more pronounced as the protein concentration increased. When compared to starch alone, the rheology of the mixed system was dramatically modified for the flow behaviour as well as for the viscoelastic properties which changed from a solid-like (3–4% starch) to a liquid-like behaviour (3–4% starch/1.5% protein). Microscopic observations showed aggregated proteins located in the continuous phase and swollen starch granules as the dispersed phase. Protein aggregates were of different sizes, part of them appeared adsorbed onto swollen starch granules while another part was unevenly distributed in the continuous phase, yielding discontinuous network which could explain the peculiar viscoelastic behaviour of such suspensions.  相似文献   

7.
Heated soluble complexes of whey protein isolate (WPI) with polysaccharides may be used to modify the properties of aerated dairy gels, which could be formulated into novel-textured high-protein desserts. The objective of this study was to determine the effect of polysaccharide charge density and concentration within a WPI-polysaccharide complex on the physical properties of aerated gels. Three polysaccharides having different degrees of charge density were chosen: low-methoxyl pectin, high-methoxyl type D pectin, and guar gum. Heated complexes were prepared by heating the mixed dispersions (8% protein, 0 to 1% polysaccharide) at pH 7. To form aerated gels, 2% glucono-δ-lactone was added to the dispersions of skim milk powder and heated complex and foam was generated by whipping with a handheld frother. The foam set into a gel as the glucono-δ-lactone acidified to a final pH of 4.5. The aerated gels were evaluated for overrun, drainage, gel strength, and viscoelastic properties. Without heated complexes, stable aerated gels could not be formed. Overrun of aerated gel decreased (up to 73%) as polysaccharide concentration increased from 0.105 to 0.315% due to increased viscosity, which limited air incorporation. A negative relationship was found between percent drainage and dispersion viscosity. However, plotting of drainage against dispersion viscosity separated by polysaccharide type revealed that drainage decreased most in samples with high-charge-density, low-methoxyl pectin followed by those with low-charge-density, high-methoxyl type D pectin. Aerated gels with guar gum (no charge) did not show improvement to stability. Rheological results showed no significant difference in gelation time among samples; therefore, stronger interactions between WPI and high-charge-density polysaccharide were likely responsible for increased stability. Stable dairy aerated gels can be created from WPI-polysaccharide complexes. High-charge-density polysaccharides, at concentrations that provide adequate viscosity, are needed to achieve stability while also maintaining dispersion overrun capabilities.  相似文献   

8.
The effect of two non-surface active polysaccharides (sodium alginate, SA, and λ-carrageenan, λ-C) in the aqueous phase on the surface dynamic properties (dynamic surface pressure and surface dilatational properties) of a commercial milk whey protein concentrate (WPC) adsorbed film at the air–water interface has been studied. A whey protein isolate (WPI) was used as reference. The WPC and WPI concentration (at 1.0% wt), temperature (at 20 °C), pH (7), and ionic strength (at 0.05 M) were maintained constant, while the effect of polysaccharide (PS) was evaluated within the concentration range 0.0–1.0% wt. The surface dynamic properties of the adsorbed films were measured in an automatic pendant drop tensiometer. At short adsorption time and in the presence of PS, the rate of diffusion of WPC to the interface was affected by the interactions with PS in the aqueous phase, which could limit protein availability for the adsorption. On the other hand, at long-term adsorption, the magnitudes of the molecular penetration and configurational rearrangement rates of WPC in mixed systems (WPC/PS) reflected the viscoelastic characteristics of the adsorbed films. The attractive interactions between WPC and PS and/or the WPC aggregation in the presence of PS, which depend on the proper polysaccharide and its concentration in the aqueous phase, have an effect on the adsorption kinetic parameters, the amount of WPC adsorbed at the air–water interface, and the dilatational viscoelastic characteristics of WPC/PS mixed systems.  相似文献   

9.
《International Dairy Journal》2006,16(9):1113-1118
Gelation of single and double heated whey protein dispersions was investigated using Ca2+ as inducing agents. Whey protein isolate (WPI) dispersions (10% w/w) were single heated (30 min, 80 °C at pH 7.0) or double heated (30 min, 80 °C at pH 8.0 and 30 min, 80 °C at pH 7.0) and diluted to obtain the desired protein and/or calcium ions concentration (4–9% and 5–30 mm, respectively). Calcium ions were added directly or by using a dialysis method. Double-heated dispersions gelled faster at lower protein and calcium ion concentrations than single-heated dispersions. Gels obtained from double-heated dispersions had lower values of shear strain and shear stress at fracture than gels obtained from single-heated dispersions. Double heating caused a significant complex modulus (G*) increase at 4% WPI and 15 mm calcium ions in comparison with gels obtained from single-heated dispersion. Less significant differences between gels made from double and single-heated dispersions were observed at 6% WPI, however a higher value of complex modulus was obtained for 8% protein gels from the single-heated solution. Native and non-reduced SDS–PAGE did not show clearly the effect of different procedures of heating on the quantities of polymerised proteins. Proteins in double-heated dispersions had higher hydrophobicity. Increased calcium concentration caused decreased protein hydrophobicity for both single and double-heated solutions.  相似文献   

10.
Whey proteins have wide acceptance and use in many products due to their beneficial nutritional properties. To further increase the amount of whey protein isolates (WPI) that may be added to products such as extruded snacks and meats, texturization of WPI is necessary. Texturization changes the folding of globular proteins to improve interaction with other ingredients and create new functional ingredients. In this study, WPI pastes (60% solids) were extruded in a twin-screw extruder at 100 degrees C with 4 pH-adjusted water streams: acidic (pH 2.0 +/- 0.2) and alkaline (pH 12.4 +/- 0.4) streams from 2 N HCl and 2 N NaOH, respectively, and acidic (pH 2.5 +/- 0.2) and alkaline (pH 11.5 +/- 0.4) electrolyzed water streams; these were compared with WPI extruded with deionized water. The effects of water acidity on WPI solubility at pH 7, color, microstructure, Rapid Visco Analyzer pasting properties, and physical structure were determined. Alkaline conditions increased insolubility caused yellowing and increased pasting properties significantly. Acidic conditions increased solubility and decreased WPI pasting properties. Subtle structural changes occurred under acidic conditions, but were more pronounced under alkaline conditions. Overall, alkaline conditions increased denaturation in the extruded WPI resulting in stringy texturized WPI products, which could be used in meat applications.  相似文献   

11.
The current study investigated the effect of a neutral polysaccharide, konjac glucomannan, on the heat-induced gelation of whey protein isolate (WPI) at pH 7. Oscillatory rheology (1 rad/s; 0.5% strain), differential scanning calorimetry and confocal laser scanning microscopy were used to investigate the effect of addition of konjac in the range 0-0.5% w/w, on the thermal gelation properties of WPI. The minimum gelling concentration for WPI samples was 11% w/w; the concentration was therefore held constant at this value. Gelation of WPI was induced by heating the samples from 20 to 80 °C, holding at 80 °C for 30 min, cooling to 20 °C, and holding at 20 °C for a further 30 min. On incorporation of increasing concentrations of konjac the gelation time decreased, while the storage modulus (G′) of the mixed gel systems increased to ∼1450 Pa for 11% w/w WPI containing 0.5% w/w konjac gels, compared to 15 Pa for 11% w/w WPI gels (no konjac). This increase in gel strength was attributed to segregative interactions between denatured whey proteins and konjac glucomannan.  相似文献   

12.
The effects of protein concentration and heating conditions on the physical properties of whey protein isolate (WPI) (in 50 mM NaCl, pH 7) and egg white (pH 9) gels were examined. Egg white and WPI gels had similar values for shear stress at fracture (i.e., isostrength), while trends for shear strain at fracture were protein-type specific. The rigidity ratio (R0.3), ratio of the rigidity at fracture (Gf) to the rigidity at 30% of fracture strain, measured departure from the stress-strain relationship of an ideal Hookean solid. All gels fit master curves of Gf vs R0.3, which were described by a power law model of R0.3=A(Gf)-°19, where "A" showed protein type-specific characteristics.  相似文献   

13.
Dialysis of whey protein isolates (WPI) removed much more calcium when carried out at an acid pH (close to 4.0) than at neutral pH. Diafiltration at acid pH was also effective. The characteristics of thermally-induced gels prepared from WPI dialysed at acid or neutral pH were studied at pH 3.75 or pH 7.0, respectively, and at calcium concentrations ranging from 0 to about 60mM (with addition of calcium chloride). The water-holding capacity (WHC) and elasticity of gels increased with decreasing calcium concentration, at both pHs. Gel firmness was maximum at 10–20 mM calcium. The solubility of the protein constituents of WPI gels in a pH 8.0 buffer was high in the case of acid gels (especially at calcium concentrations lower or equal to 20 mM) and low for neutral gels at all calcium concentrations. Protein solubility values in the presence or absence of denaturing and reducing agents reflect the existence of intermolecular disulphide bonds in neutral gels and their absence in acid gels.  相似文献   

14.
Cold‐set whey protein isolate (WPI) gels formed by sodium or calcium chloride diffusion through dialysis membranes were evaluated by mechanical properties, water‐holding capacity and microscopy. The increase of WPI concentration led to a decrease of porosity of the gels and to an increase of hardness, elasticity and water‐holding capacity for both systems (CaCl2 and NaCl). WPI gels formed by calcium chloride addition were harder, more elastic and opaque, but less deformable and with decreased ability to hold water in relation to sodium gels. The non linear part of stress–strain data was evaluated by the Blatz, Sharda, and Tschoegl equation and cold‐set gels induced by calcium and sodium chloride addition showed strain‐weakening and strain‐hardening behaviour, respectively. The fractal structure of the gels indicated a weak‐link behaviour. For WPI gels results suggest intrafloc links, formed at heating step, which were more rigid than the interfloc links, promoted by salt addition.  相似文献   

15.
The effect of Maillard reaction on the mechanical properties of whey protein isolate (WPI) heat-induced gels was evaluated. WPI and dextran (15–25 kDa) conjugates were obtained by controlled dry heating during storage at 60 °C and 63% relative humidity for 2, 5 and 9 days. Changes in browning intensity and content of free amino groups were used to estimate the Maillard reaction. A decrease in free amino groups of WPI was observed when increasing polysaccharide concentration and reaction time. An increase in both a* and b* CIE Lab colour parameters indicated the development of a reddish-brown colour, typical of the Maillard reaction. Uniaxial compression and stress relaxation tests were performed to measure the mechanical properties of mixed and conjugate gels. Maillard reaction significantly modified the mechanical properties of WPI/DX gels, and even prevented fracture when conjugate gels were subjected to 80% deformation in uniaxial compression test.  相似文献   

16.
The effects of shear on whey protein isolate (WPI) gels, pure or mixed with xanthan, have been investigated at pH 5.4 by dynamic oscillatory measurements and light microscopy (LM). The shear was performed on the suspensions under a constant stress of between 0.04 and 2.1 Pa. Various temperature conditions were chosen in order to describe the effects of shear at the different states of aggregation of the WPI. Shear-sensitive aggregation phenomena were already found around 40°C for the pure WPI samples. Continuous shearing during heating from 20 to 40°C, prior to heat treatment at 90°C, resulted in a gel with a storage modulus (G′) half that of the unsheared gel, independent of the shear stress. Continuous shearing during heating from 20 to 76°C resulted in a further decrease in G′. Inhomogeneities arose in networks formed from continuously sheared suspensions during heating from 20 to 50°C and above. Depending on the shear stress and on the heating range of the shear, the networks showed areas of varied compactness and different classes of pores, ranging from 10 to 200 μm. A higher G′, compared to that for the unsheared gel, was found for gels subjected to shear for short periods in the vicinity of the gel point. The presence of xanthan inhibited the aggregation and demixing of the WPI, described as a sterical phenomenon. Under static conditions, the presence of xanthan resulted in a more homogeneous WPI network. Exposing the mixed suspensions to shear generally increased the inhomogeneity of the network structure. Short periods of shearing in the vicinity of the gel point affected the kinetics of the gel formation and resulted in gels with higher G′ values than the unsheared gel. Continuous shearing under stresses below 0.09 Pa, during heating from 20 to 60°C and above, also resulted in gels with an increased G′. Continuous shear under stresses above 0.9 Pa resulted in gels with a decreased G′  相似文献   

17.
The effect of heating rate and pH on fracture properties and held water (HW) of globular protein gels was investigated. The study was divided into 2 experiments. In the 1st experiment, whey protein isolate (WPI) and egg white protein (EWP) gels were formed at pH 4.5 and 7.0 using heating rates ranging from 0.1 to 35 °C/min and holding times at 80 °C up to 240 min. The 2nd experiment used one heating condition (80 °C for 60 min) and probed in detail the pH range of 4.5 to 7.0 for EWP gels. Fracture properties of gels were measured by torsional deformation and HW was measured as the amount of fluid retained after a mild centrifugation. Single or micro-phase separated conditions were determined by confocal laser scanning microscopy. The effect of heating rate on fracture properties and HW of globular protein gels can be explained by phase stability of the protein dispersion and total thermal input. Minimal difference in fracture properties and HW of EWP gels at pH 4.5 compared with pH 7.0 were observed while WPI gels were stronger and had higher HW at pH 7.0 as compared to 4.5. This was due to a mild degree of micro-phase separation of EWP gels across the pH range whereas WPI gels only showed an extreme micro-phase separation in a narrow pH range. In summary, gel formation and physical properties of globular protein gels can be explained by micro-phase separation. PRACTICAL APPLICATION: The effect of heating conditions on hardness and water-holding properties of protein gels is explained by the relative percentage of micro-phase separated proteins. Heating rates that are too rapid require additional holding time at the end-point temperature to allow for full network development. Increase in degree of micro-phase separation decreases the ability for protein gels to hold water.  相似文献   

18.
Flow properties at pH 5.5-7.5 of whey protein isolate (WPI)-xanthan solutions containing 0-0.5 w/w% xanthan were studied by viscosimetry, although rigidity and fracture properties of the corresponding heat-set gels (90°C, 30 min) were determined by uniaxial compression. All the studied solutions displayed generalized shearthinning flow behaviour. Synergistic WPI-xanthan interactions has been revealed by observing that rheological parameters [σmsf, K, n, η (γ)] characterizing blends were larger than those calculated from the two separated solutions. Such a behaviour was attributed to segregative phase separation of whey proteins and xanthan. Effects of xanthan on WPI-xanthan gel properties both depended on pH and xanthan concentration. Simultaneous increased xanthan concentration and decreased pH inhibited gelation of WPI-xanthan blends. Regarding gel strength, synergistic WPI-xanthan interactions were observed at pH >7.0 and low xanthan concentration (0.05 or 0.1 w/w%). Antagonism between the two macromolecules occurred at low xanthan concentration and pH ≤6.5, and high xanthan concentration (0.2 or 0.5 w/w%) at all pH tested. Low xanthan concentration rendered mixed gels more brittle than protein gels, and high xanthan concentration decreased pH effects on gel stress-strain relationships. The balance between strong thermal aggregation of concentrated whey proteins - in presence of incompatible xanthan -, high viscosity of blends and repulsive surface forces of protein molecules was thought to be at the origin of WPI-xanthan gel mechanical properties.  相似文献   

19.
Four % (wt/wt) aqueous solutions were prepared at corn starch:methylcellulose:whey protein isolate (CS:MC:WPI) ratios of 2:2:2, 1:2:3, 2:1:3, 2:2:0, 1:2:0 and 2:1:0. Glycerol (gly) was used as a plasticiser at CS–MC–WPI:gly ratios of 2:1, 2.5:1 and 3:1. CS–MC–WPI blend films were stronger than CS–WPI films and had lower oxygen permeability (OP) than MC–WPI films. The highest tensile strength (TS) of blend films was 8.01 ± 3.41 MPa, at CS:MC:WPI ratio of 2:2:0 and CS–MC–WPI:gly ratio of 3:1. Lowest OP value was 45.05 ± 7.24 cm3 μm m?2 per day kPa?1, at CS:MC:WPI ratio of 2:2:2 and CS–MC–WPI:gly ratio of 3:1. OP values were predictable based on relative amounts of components. However, TS and elastic modulus properties of the CS–MC–WPI blend films did not reflect the relative amounts of the components. All of CS–MC–WPI films were translucent indicating some degree of immiscibility among the CS, MC and WPI. These results indicate the influence of complex molecular interactions among the components.  相似文献   

20.
Contour plots were developed for the compression stress (at 20% deformation) of single-component, mixed and filled protein gels. Samples were made by heating and acidification from skim milk powder, SMP (0–20% TS), whey protein isolate, WPI (0–10% TS), and recombined cream, within pH 3.6–3.9, 4.6–4.8 and 5.1–5.3. At higher pH, WPI gels were stronger than SMP gels. WPI had a reinforcing effect on SMP gels, while small additions of SMP to WPI gels resulted in weaker mixed gels. Filled gels containing cream had higher compression strengths than mixed gels. Micrographs showed linking of casein chains by WPI strands in mixed gels and compatibility of fat globules with casein micelles in the protein network of filled gels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号