首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of PB‐g‐SAN impact modifiers (polybutadiene particles grafted by styrene and acrylonitrile) are synthesized by seed emulsion copolymerization initiated by oil‐soluble initiator, azobisiobutyronitrile (AIBN). The ABS blends are obtained by mixing SAN resin with PB‐g‐SAN impact modifiers. The mechanical behavior and the phase morphology of ABS blends are investigated. The graft degree (GD) and grafting efficiency (GE) are investigated, and the high GD shows that AIBN has a fine initiating ability in emulsion grafting of PB‐g‐SAN impact modifiers. The morphology of the rubber particles is observed by the transmission electron microscopy (TEM). The TEM photograph shows that the PB‐g‐SAN impact modifier initiated by AIBN is more likely to form subinclusion inside the rubber particles. The dynamic mechanical analysis on ABS blends shows that the subinclusion inside the rubber phase strongly influences the Tg, maximum tan δ, and the storage modulus of the rubber phase. The mechanical test indicates that the ABS blends, which have the small and uniform subinclusions dispersed in the rubber particles, have the maximum impact strength. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

2.
A series of poly(acrylonitrile‐butadiene‐styrene) (ABS) grafting modifiers were synthesized by emulsion grafting poly(acrylonitrile‐styrene) (SAN) copolymer onto polybutadiene (PB) latex rubber particles. The chain transfer reagent tert‐dodecyl mercaptan (TDDM) was used to regulate the grafting degree of ABS and the molecular weight of SAN copolymers. By blending these ABS modifiers with Chlorinated polyvinyl chloride (CPVC) resin, a series of CPVC/ABS blends were obtained. The morphology, compatibility, and the mechanical properties of CPVC/ABS blends were investigated. The scanning electron microscope (SEM) studies showed that the ABS domain all uniformly dispersed in CPVC matrix. Dynamic mechanical analyses (DMA) results showed that the compatibility between CPVC and SAN became enhanced with the TDDM content. From the mechanical properties study of the CPVC/ABS blends, it was revealed that the impact strength first increases and then decreases with the TDDM content, which means that the compatibility between CPVC and the SAN was not the only requirement for maximizing toughness. The decreasing of tensile strength and the elongations might attribute to the lower entanglement between chains of CPVC and SAN. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

3.
Polybutadiene‐g‐poly(styrene‐co‐acrylonitrile) (PB‐g‐SAN) impact modifiers with different polybutadiene (PB)/poly(styrene‐co‐acrylonitrile) (SAN) ratios ranging from 20.5/79.5 to 82.7/17.3 were synthesized by seeded emulsion polymerization. Acrylonitrile–butadiene–styrene (ABS) blends with a constant rubber concentration of 15 wt % were prepared by the blending of these PB‐g‐SAN copolymers and SAN resin. The influence of the PB/SAN ratio in the PB‐g‐SAN impact modifier on the mechanical behavior and phase morphology of ABS blends was investigated. The mechanical tests showed that the impact strength and yield strength of the ABS blends had their maximum values as the PB/SAN ratio in the PB‐g‐SAN copolymer increased. A dynamic mechanical analysis of the ABS blends showed that the glass‐transition temperature of the rubbery phase shifted to a lower temperature, the maximum loss peak height of the rubbery phase increased and then decreased, and the storage modulus of the ABS blends increased with an increase in the PB/SAN ratio in the PB‐g‐SAN impact modifier. The morphological results of the ABS blends showed that the dispersion of rubber particle in the matrix and its internal structure were influenced by the PB/SAN ratio in the PB‐g‐SAN impact modifiers. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2165–2171, 2005  相似文献   

4.
:This study concerns the melt‐free radical grafting of glycidyl methacrylate (GMA) onto high‐density polyethylene (HDPE). We studied the effect of two initiators (tert‐butyl cumyl peroxide and di‐tert‐butyl peroxide) onto HDPE. Crosslinking of polymer was observed in the presence of 0.3 wt % tert‐butyl cumyl peroxide but not with 0.3 wt % di‐tert‐butyl peroxide. The grafting was carried out in a Brabender batch mixer at 190 °C. The grafting yield of GMA onto HDPE (determined by infrared spectrometry) is weak (<1 wt % for an initial concentration in monomer of 6 wt %). Moreover, it was noted that the degree of grafting did not vary with the concentration and the nature of peroxide used. To increase the grafting yield of GMA, we added to the HDPE/peroxide/GMA system an electron‐donating monomer, such as styrene. Adding this comonomer multiplied the rate of grafted GMA 3‐ or 4‐fold, resulting in a ratio [styrene]i/[GMA]i = 1 mol/mol with [GMA]i = 6 wt %. So, the copolymerization is favored compared with the homopolymerization. This kind of copolymer presenting reactive functions is very attractive in the field of compatibilizing immiscible polymers. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 581–590, 2001  相似文献   

5.
Two families of acid functional styrene/acrylonitrile copolymers (SAN) for application as dispersed phase barrier materials in poly(ethylene) (PE) were studied. One type is SAN made by nitroxide mediated polymerization (NMP), which was subsequently chain extended with a styrene/tert‐butyl acrylate (S/tBA) mixture to provide a block copolymer (number average molecular weight Mn = 36.6 kg mol?1 and dispersity ? = 1.34, after which the tert‐butyl protecting groups were converted to acid groups (SAN‐b‐S/AA). The other acid functional SAN is made by conventional radical terpolymerization (SAN‐AA). SAN‐AA and SAN‐b‐S/AA were each melt blended with PE grafted with epoxy functional glycidyl methacrylate (PE‐GMA) at 160 °C in a twin screw extruder (70:30 wt % PE‐GMA:SAN co/terpolymer). The non‐reactive PE‐g‐GMA/SAN blend had a volume to surface area diameter = 3.0 μm while the reactive blends (via epoxy/acid coupling) (PE‐GMA/SAN‐b‐SAA and PE‐GMA/SAN‐AA) had = 1.7 μm and 1.1 μm, respectively. After thermal annealing, the non‐reactive blend coarsened dramatically while the reactive blends showed little signs of coarsening, suggesting that the acid/epoxy coupling was effective for morphological stability. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44178.  相似文献   

6.
The addition of maleic anhydride grafted polybutadiene (PB‐g‐MAH) can greatly improve the compatibility of polyamide 66 (PA66)/acrylonitrile‐butadiene‐styrene copolymer (ABS) blends. Unlike the commonly used compatibilizers in polyamide/ABS blends, PB‐g‐MAH is compatible with the ABS particles' core phase polybutadiene (PB), rather than the shell styrene‐acrylonitrile (SAN). The compatibility and interaction of the components in the blends were characterized by Fourier transform‐infrared spectra (FTIR), Molau tests, melt flow index (MFI), dynamic mechanical analyses (DMA), and scanning electron microscopic (SEM) observations. The results show that PB‐g‐MAH can react with the amino end groups in PA66 while entangle with the PB phase in ABS. In this way, the compatibilizer anchors at the interface of PA66/ABS blend. The morphology study of the fracture sections before and after tensile test reveals that the ABS particles were dispersed uniformly in the PA66 matrix and the interfacial adhesion between PA66 and ABS was increased significantly. The mechanical properties of the blends thus were enhanced with the improving of the compatibility. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

7.
Tetramethylpolycarbonate‐block‐poly(styrene‐co‐acrylonitrile) (TMPC‐block‐SAN) block copolymers containing various amounts of acrylonitrile (AN) were examined as compatibilizers for blends of polycarbonate (PC) with poly(styrene‐co‐acrylonitrile) (SAN) copolymers. To explore the effects of block copolymers on the compatibility of PC/SAN blends, the average diameter of the dispersed particles in the blend was measured with an image analyzer, and the interfacial properties of the blends were analyzed with an imbedded fibre retraction technique and an asymmetric double‐cantilever beam fracture test. Reduction in the average diameter of dispersed particles and effective improvement in the interfacial properties was observed by adding TMPC‐block‐SAN copolymers as compatibilizer of PC/SAN blend. TMPC‐block‐SAN copolymer was effective as a compatibilizer when the difference in the AN content of SAN copolymer and that of SAN block in TMPC‐block‐SAN copolymer was less than about 10 wt%. Copyright © 2004 Society of Chemical Industry  相似文献   

8.
The fracture surfaces and deformation micromechanisms of styrene‐co‐acrylonitrile (SAN)/polybutadiene‐g‐styrene‐co‐acrylonitrile (PB‐g‐SAN) blends with the compositions ranging from 65/35 to 0/100 were studied with a scanning electron microscopy technique. The results were compared to the essential work of fracture parameters obtained in a previous study conducted on double‐edge notched tension specimens. Different plastic damage mechanisms were observed, and they depended on the blend composition. For blends of 65/35 and 45/55, a high degree of rubber particle cavitation and multiple cracking followed by the massive shear yielding of the matrix were found to be the main source of energy dissipation during crack growth. Within this compositional range, more intense plastic damage in a larger volume of material, especially at the notched region, was observed as the concentration of the rubbery phase increased. For the 25/75 blend, the prevailing mechanism was pure shear yielding without any sign of cavitation inside the particles, and the fracture surface became relatively flat and was covered with aligned small microcracks. This sample showed the highest specific essential work (we) value among the blends examined in the previous study. For the samples containing concentrations of dispersed phase higher than 75%, the shear yielding process gradually became less important with the progressive importance of multiple crazing so that high‐magnification micrographs revealed extensive microcracking/crazing both inside and between the rubber particles, as the only active deformation micromechanism for neat PB‐g‐SAN. The variation we and specific plastic work of fracture with the PB‐g‐SAN phase content were successfully explained in terms of prevalent deformation mechanisms. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40072.  相似文献   

9.
A series of experiments were designed and conducted to determine the significance of process parameters in the grafting of styrene and acrylonitrile onto polybutadiene seeds in a semicontinuous emulsion copolymerization system. The significances of the parameters were obtained by comparing the variance ratios, or F values, with F‐distributions. The significance level of each test (α‐value) was obtained by variance analysis. The important process parameters in industrial polymerization processes are usually monomer‐to‐polymer ratio, initiator type and concentration, chain‐transfer agent, and reaction temperature. The target responses were final monomer conversion, grafting degree, grafting efficiency, gel percent, and viscosity‐average molecular weight of free styrene‐acrylonitrile (SAN). The analysis of variance indicated that cumene hydroperoxide as the initiator and reaction temperature had strong effects on the graft structure. Moreover, free SAN molecular weight was significantly affected by the monomer/polymer ratio and cumene hydroperoxide and n‐dodecyl mercaptan as chain‐transfer agents. The raspberry‐like morphology of grafted acrylonitrile‐butadiene‐styrene (ABS) particles and phase separation within the particles were confirmed by transmission electron microscopy. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
The linear viscoelastic behavior of acrylonitrile‐butadiene‐styrene (ABS) polymers in the molten state, with different degrees of grafting, was investigated within the framework of Palierne's emulsion model. The main aim of the present study is to quantitatively analyze the effect of grafting degree on the storage modulus G′ of the polybutadiene (PB) rubber core dispersed in ABS polymers. According to our model calculations, the degree of grafting significantly affects the G′ values of the PB core and, hence, the viscoelastic properties of ABS polymers. Our calculations showed that the Palierne model is very useful to calculate the storage modulus of the rubber particles dispersed in rubber‐modified polymeric materials, at least in the high‐frequency region. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 924–930, 2001  相似文献   

11.
Natural rubber (NR) latex was grafted by emulsion polymerization with styrene monomer, using cumene hydroperoxide/tetraethylene pentamene as redox initiator system. The polystyrene‐grafted NR (PS‐g‐NR) was hydrogenated by diimide reduction in the latex form using hydrazine and hydrogen peroxide with boric acid as a promoter. At the optimum condition for graft copolymerization, a grafting efficiency of 81.5% was obtained. In addition, the highest hydrogenation level of 47.2% was achieved using a hydrazine:hydrogen peroxide molar ratio of 1:1.1. Hydrogenation of the PS‐g‐NR (H(PS‐g‐NR)) increased the thermal stability. Transmission electron microscopy analysis of the H(PS‐g‐NR) particles revealed a nonhydrogenated rubber core and hydrogenated outer rubber layer, in accordance with the layer model. The addition of H(PS‐g‐NR) at 10 wt % as modifier in an acrylonitrile–butadiene–styrene (ABS) copolymer increased the tensile and impact strengths and the thermal resistance of the ABS blends, and to a greater extent than that provided by blending with NR or PS‐g‐NR. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

12.
Polymer blend of poly(2,6‐dimethyl‐1,4‐phenylene ether) (PPE) and poly(styrene‐co‐acrylonitrile) (SAN), which has broad commercial interest, has limited miscibility. A triblock terpolymer, polystyrene‐block‐polybutadiene‐block‐poly(methyl methacrylate) (SBM), is often used as compatibilizer to improve the miscibility of PPE/SAN. In this work, dissipative particle dynamics and molecular dynamics of Material Studio were used to study the essentials that influence miscibility of the blend systems, and then Flory–Huggins parameter χ, radial distribution function (RDF) and morphologies are analyzed. It shows that the blends with more content of styrene in SAN (above 90 wt%), whose mass percentage is 60%, are best miscible. For the systems of PPE/SAN added with SBM, the miscibility increases and then decreases with the increase of SBM content. A longer chain of styrene (S) in SBM leads to wrapped structure of PMMA by PB, wrapped by PS, resulting in decrease of the miscibility. From studies and simulation of χ and RDF, the best blend system for commercial and industrial use is the one with mass ratio of PPE/SAN/SBM 36/54/10, in which S content in SAN is above 90 wt%. For SBM, the ratio of chain length styrene (S)/butadiene (B) is lessthan 1, while B and M are the same in chain length. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

13.
Styrene‐EPDM‐acrylonitrile tripolymer (EPDM‐g‐SAN) was synthesized by the graft copolymerization of styrene (St) and acrylonitrile (An) onto ethylene‐propylene‐diene terpolymer (EPDM) with “phase inversion” emulsification technique. The high impact strength engineering plastics AES was the blend of SAN resin and EPDM‐g‐SAN, which occupied good weathering and yellow discoloration resistivity. The effects of An percentage in comonomer and the weight proportion of EPDM to St‐An on graft copolymerization behavior and AES notched impact strength were studied. The results showed that monomer conversion ratio (CR) exhibited a peak when the An percentage changed, and the maximum value was 97.5%. Grafting ratio (GR) and grafting efficiency (GE) enhance as well. The notched impact strength of AES presented a peak with the maximum value of 53.0 KJ/m2, when An percentage was at the range of 35–40%. The spectra of FTIR showed that St and An were graft onto the EPDM. DSC analysis illuminated that Tg of EPDM phase in the blends was lower than that of the pure EPDM. TEM and SEM micrographs indicated that the polarity of g‐SAN of EPDM‐g‐SAN was the main factor effect the particle morphology, in terms of size, distribution and isotropy. When weight ratio of St to An was 65/35, the polarity of g‐SAN chains was appropriate, and the EPDM‐g‐SAN particles dispersed well in the SAN matrix. The super impact toughness is interpreted in terms of EPDM phase cavitation and enhanced plastic shear yielding. The highest toughness occurs at an optimum EPDM‐g‐SAN phase particle size which is about 0.2 μm in SAN resin matrix. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

14.
The gloss properties of the polycarbonate (PC)/poly(methyl methacrylate‐acrylonitrile‐butadiene‐styrene) (MABS) blend with styrene‐acrylonitrile‐co‐glycidyl methacrylate (SAN‐co‐GMA) as a compatibilizing agent were investigated. For the PC/poly(MABS)/SAN‐co‐GMA (65/15/20, wt %) blend surface, the reduction of gloss level was observed most significantly when the GMA content was 0.1 wt %, compared with the blends with 0.05 wt % GMA or without GMA content. The gloss level of the PC/poly(MABS)/SAN‐co‐GMA (0.1 wt % GMA) blend surface was observed to be 35, which showed 65% lower than the PC/poly(MABS)/SAN‐co‐GMA blend without GMA content. The gloss reduction was most probably caused by the insoluble fractions of the PC/poly(MABS)/SAN‐co‐GMA blend that were formed by the reaction between the carboxylic acid group in poly(MABS) and epoxy group in SAN‐co‐GMA. The results of optical and transmission electron microscope analysis, spectroscopy study, and rheological properties supported the formation of insoluble structure of the PC/poly(MABS)/SAN‐co‐GMA blend when the GMA content was 0.1 wt %. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46450.  相似文献   

15.
PS/AES blends were prepared by in situ polymerization of styrene in the presence of AES elastomer, a grafting copolymer of poly(styrene‐co‐acrylonitrile) – SAN and poly(ethylene‐co‐propylene‐co‐diene)–EPDM chains. These blends are immiscible and present complex phase behavior. Selective extraction of the blends' components showed that some fraction of the material is crosslinked and a grafting of PS onto AES is possible. The morphology of the noninjected blends consists of spherical PS domains covered by a thin layer of AES. After injection molding, the blends show morphology of disperse elastomeric phase morphology in a rigid matrix. Two factors could contribute to the change of morphology: (1) the stationary polymerization conditions did not allow the mixture to reach the equilibrium morphology; (2) the grafting degree between PS and AES was not high enough to ensure the morphological stability against changes during processing in the melting state. The drastic change of EPDM morphology from continuous to disperse phase has as consequence a decrease in the intensity of the loss modulus peaks corresponding to the EPDM glass transition. However, the storage modulus at temperatures between the glass transition of EPDM and PS/SAN phases does not change significantly. This effect was attributed to the presence of the SAN rigid chains in the AES. © 2009 Wiley Periodicals, Inc. Journal of Applied Polymer Science, 2009  相似文献   

16.
Narrow‐disperse and monodisperse cross‐linked core–shell polymer particles containing different functional groups, such as esters, hydroxyls, chloromethyls, carboxylic acids, amides, cyanos, and glycidyls, in the shell layers in the micrometer size range were prepared by a two‐stage precipitation polymerization in the absence of any stabilizer. Commercial divinylbenzene (DVB), containing 80% DVB, was precipitation polymerized in acetonitrile without any stabilizer as the first‐stage polymerization and was used as the core. Several functional monomers, including methyl methacrylate, ethyl methacrylate, butyl methacrylate, 2‐hydroxyethyl methacrylate, glycidyl methacrylate, methyl acrylate, ethyl acrylate, butyl acrylate, t‐butyl acrylate, i‐octyl acrylate, acrylic acid, acrylamide, acrylonitrile, styrene, and p‐chloromethyl styrene, were incorporated into the shells during the second‐stage polymerization. The resulting core–shell polymer particles were characterized with scanning electron microscopy and Fourier transform infrared spectroscopy. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1776–1784, 2006  相似文献   

17.
The scratch behavior of butyl‐acrylate rubber‐modified styrene‐acrylonitrile thermoplastics is investigated following the ASTM D7027 linearly increasing normal load test methodology. The critical normal loads at the onset of the major transitions along the scratch path, such as groove formation, scratch visibility, microcrack formation, and plowing, are reported and quantitatively analyzed. It is found that the scratch resistance generally deteriorates with increasing butyl‐acrylate rubber content, and is strongly related to the tensile and compressive yield stresses of the blends. Microscopy investigation indicates that a rubber content of up to 30 wt % in a styrene‐acrylonitrile copolymer (SAN) does not alter the scratch‐induced damage mechanisms, but only reduces the critical onset loads for the observed damage transitions. The present finding suggests that addition of rubber causes reductions in modulus, tensile, and compressive yield stresses, thus leading to deterioration in scratch resistance. It appears that the improvement in ductility for SAN after the rubber toughening does not benefit scratch resistance. Implication of rubber toughening on scratch behavior of polymers is discussed. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
BACKGROUND: Sub‐micrometer core‐shell polybutadiene‐graft‐polystyrene (PB‐g‐PS) copolymers with various ratios of polybutadiene (PB) core to polystyrene (PS) shell were synthesized by emulsion grafting polymerization with 1,2‐azobisisobutyronitrile (AIBN) as initiator. These graft copolymers were blended with PS to prepare PS/PB‐g‐PS with a rubber content of 20 wt%. The mechanical properties, morphologies of the core‐shell rubber particles and deformation mechanisms under various conditions were investigated. RESULTS: Infrared spectroscopic analysis confirmed that PS could be grafted onto the PB rubber particles. The experimental results showed that a specimen with a ‘cluster’ dispersion state of rubber particles in the PS matrix displayed better mechanical properties. Transmission electron micrographs suggested that crazing only occurred from rubber particles and extended in a bridge‐like manner to neighboring rubber particles parallel to the equatorial plane at a high speed for failure specimens, while the interaction between crazing and shear yielding stabilized the growing crazes at a low speed in tensile tests. CONCLUSION: AIBN can be used as an initiator in the graft polymerization of styrene onto PB. The dispersion of rubber particles in a ‘cluster’ state leads to better impact resistance. The deformation mechanism in impact tests was multi‐crazing, and crazing and shear yielding absorbed the energy in tensile experiments. Copyright © 2009 Society of Chemical Industry  相似文献   

19.
The phase morphology developing in immiscible poly(styrene‐co‐acrylonitrile) (SAN)/ethylene–propylene–diene monomer (EPDM) blends was studied with an in situ reactively generated SAN‐g‐EPDM compatibilizer through the introduction of a suitably chosen polymer additive (maleic anhydride) and 2,5‐dimethyl‐2,5‐di‐(t‐butyl peroxy) hexane (Luperox) and dicumyl peroxide as initiators during melt blending. Special attention was paid to the experimental conditions required for changing the droplet morphology for the dispersed phase. Two different mixing sequences (simple and two‐step) were used. The product of two‐step blending was a major phase surrounded by rubber particles; these rubber particles contained the occluded matrix phase. Depending on the mixing sequence, this particular phase morphology could be forced or could occur spontaneously. The composition was stabilized by the formation of the SAN‐g‐EPDM copolymer between the elastomer and addition polymer, which was characterized with Fourier transform infrared. As for the two initiators, the blends with Luperox showed better mechanical properties. Scanning electron microscopy studies revealed good compatibility for the SAN/EPDM blends produced by two‐step blending with this initiator. Dynamic mechanical thermal analysis studies showed that the two‐step‐prepared blend with Luperox had the best compatibility. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
Dispersion behavior of multiwalled carbon nanotube (MWCNT), rheological and mechanical properties of various MWCNT/poly(styrene‐co‐acrylonitrile) (SAN) nanocomposites were investigated. MWCNT/SAN nanocomposites were prepared by three different methods; MWCNT/SAN melt blending, MWCNT/SAN in situ atom transfer radical polymerization (ATRP) and functionalized‐MWCNT/SAN in situ ATRP. Formation of SAN onto the surface of MWCNT and the molecular weight of grafted‐SAN were confirmed by fourier transform infrared spectra, 1H‐NMR and 13C‐NMR. Crossover frequency of storage and loss modulus from rheological measurement and dynamic mechanical analysis showed that functionalized MWCNT/SAN in situ ATRP nanocomposite showed more uniform dispersion of MWCNT. Improved mechanical and electrical properties were observed for functionalized MWCNT/SAN in situ ATRP nanocomposite. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号