首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objective of this study was to improve the durability and stability of urea-formaldehydebonded wood products by decreasing the internal stress developed during resin cure and by improving the ability of the cured system to withstand cyclic stresses. Urea-formaldehyde resins were modified by (i) incorporating urea-terminated di- and trifunctional flexible amines into the resin structure, (ii) curing the resins with the hydrochloride derivatives of some of these amines (in place of ammonium chloride), or (iii) using both processes. The cyclic stress resistance of solid wood joints and the internal bond strength and thickness swell of particleboards made with these resins were compared with these properties in joints and particleboards made with an unmodified resin and a commercial urea-formaldehyde resin. The strength of joints and the internal bond strength of particleboards made with resins modified with urea-terminated hexamethylenediamine, bishexamethylenetriamine, and poly(propylene oxide) triamine at modifier contents of 13, 16, and 28 wt %, respectively, showed excellent stability even after repeated wet-dry cycles. Similar stress resistance was shown by wood joints and particleboards bonded with the unmodified resin cured with the hydrochloride salts of hexamethylenediamine and triethyleneaminetriamine. In contrast, solid wood joints and particleboards bonded with the unmodified resin cured with ammonium chloride showed lower resistance to cyclic stress. Particleboards that possessed good cyclic stress resistance also showed less thickness swell.  相似文献   

2.
Mechanical, morphological, and thermal properties of the raw and delignified wood sawdust (DWS) reinforced unsaturated polyester (UP) composites were evaluated. Composites were prepared using Resin Transfer molding technique by changing filler loading (5, 10, 15, and 20 wt%) for both raw and DWS reinforced UP. Mechanical (tensile and flexural), Fourier transform infrared spectroscopy (FTIR), morphological (scanning electron microscopy [SEM]) and thermal (thermogravimetric analysis [TGA]) properties were successively characterized. FTIR confirmed the removal of lignin from wood sawdust during the delignification process. The tensile strength, Young's modulus, and flexural strength values increased only up to 15% filler loading then decreased with increasing the filler. DWS reinforced composites had better mechanical properties compared to raw composites. SEM micrographs reveal that DWS reinforced composites have good compatibility with UP resin. According to TGA results, DWS reinforced composites showed enhanced thermal stability at the final decomposition stage above 400°C. J. VINYL ADDIT. TECHNOL., 24:185–191, 2018. © 2016 Society of Plastics Engineers  相似文献   

3.
Polymer blends based on various ratios of polystyrene (PS) and polymethyl methacrylate (PMMA) were exposed to different doses of gamma radiation up to 25 Mrad. The structure–property behavior of the polymer blends before and after they had been irradiated was investigated by DSC, TGA, and FTIR spectroscopy. The DSC scans of the glass transition temperature (Tg) of the different polymer blends showed that the Tg was greatly decreased by increasing the ratio of the PMMA component in the polymer blends. Moreover, the Tg of PS/PMMA blends was found to decrease with increasing irradiation dose. The depression in Tg was noticeable in the case of blends rich in PMMA component. The TGA thermograms showed that the thermal stability of the unirradiated polymer blends decreases with increasing the ratios of PMMA component. Also, it was found that the presence of PS polymer in the blends affords protection against gamma radiation degradation and improves their thermal stability. However, exposing the polymer blends to high doses of gamma radiation caused oxidative degradation to PMMA components and decreased the thermal stability. The investigation of the kinetic parameters of the thermal decomposition reaction confirm the results of thermal stability. The FTIR analysis of the gamma‐irradiated polymer blend films gives further support to the TGA data. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 509–520, 1999  相似文献   

4.
The effect of gamma irradiation and short glass fiber (SGF) on the thermal and morphological behavior of the recycled poly (ethylene terephthalate) (rPET) in the presence of reactive additive (epoxy resin, 2 wt %) has been investigated. Characterization of the resulted composites to evaluate the effect of incorporation the SGF and irradiation by means of differential scanning calorimetry, X‐ray diffraction, thermal gravimetric analysis, and scanning electron microscopy (SEM). The results show that the SGF and epoxy resin behave as nucleating agents for the crystallization of rPET. A noticeable increase in the rPET thermal stability in the presence of both SGF and epoxy resin has been observed. Furthermore, the rPET melting temperature (Tm) slightly decrease in the presence of the SGF and remains nearly constant with the incorporation of the epoxy resin. On the other hand, the rPET crystallinity percent (X%) decreases in the presence of SGF and gamma irradiation. The SEM showed that a layer of epoxy resin was coated onto the SGF in the rPET matrix. This coating layer raises the interfacial shear strength between the fiber and polymer matrix and also increases with gamma irradiation. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

5.
In this study, we modified melamine-formaldehyde (MF) resin adhesive with liquefied wood (LW) and determined the properties of MF–LW adhesive mixtures. Furthermore, we produced particleboards using prepared MF–LW mixtures and evaluated their mechanical and physical properties. Results showed that with increasing content of LW in the adhesive mixture gel time and peak temperature increased while reaction enthalpy decreased. With increasing substitution of MF resin adhesive with LW the thermal stability of adhesive mixture reduced, namely thermal degradation started at lower temperature and weight loss increased. Properties of particleboards improved with increasing amount of LW in the adhesive mixture up to 20% and then deteriorated. Nevertheless, the properties of particleboard with 30% LW in the adhesive mixture were comparable to the properties of particleboard without LW while they worsen at greater portion of LW. Consequently, MF resin adhesive with 30% LW substitution could be used to produce particleboards with suitable mechanical properties and reduced formaldehyde release content.  相似文献   

6.
Rubber wood sawdust fillers were mixed with unsaturated polyester matrix, which was prepared by recycling of PET waste from soft drink bottles, to prepare rubber wood sawdust/UPR composite. PET wastes were subjected to recycle by glycolysis and depolymerized to its monomer and dimmer. The glycolysed product was used to prepare unsaturated polyester resin. The FTIR analysis has been done on the resin and the glycolysed product. The resin then mixed with rubber wood sawdust fillers before and after alkali treatment with 10% NaOH. The effect of surface treatment and filler content on the mechanical properties and water absorption of the composite were studied. The tensile fractured surfaces of the composites were studied by Scanning Electron Microscopic (SEM) technique to investigate the interfacial bonding between the matrix and the filler. The results show that the tensile modulus increased with increasing filler contents. In addition, the results show that alkali treatment causes a better adhesion between rubber wood sawdust and UPR matrix and improves the mechanical properties.  相似文献   

7.
Concentrated inverse emulsion polymerization was used for making chromatography columns (based on crosslinked polystyrene divinylbenzene (PS‐DVB)) with pore sizes less than 10 μm. According to DSC‐thermal gravimetry thermograms, it was confirmed that the residual monomer concentration after polymerization process is negligible. For application of these columns in chiral chromatography, the β‐cyclodextrin is chemically fixed on the PS‐DVB resin pore surface. The presence of hydroxyl groups in the PS‐DVB resin after chemical modification was confirmed by FTIR spectroscopy. By chemical modification of the PS‐DVB resin, thermal stability increased up to 446°C. The structure of columns was analyzed by scanning electron microscopy (SEM). SEM evaluations showed that the porous structure of PS‐DVB resin was maintained intact after the chemical modification with β‐cyclodextrin. According to X‐ray data, presence of the crystalline domain that is related to β‐cyclodextrin is confirmed.© 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 857–863, 2006  相似文献   

8.
Nowadays, the majority of adhesives used in particleboards (PB) manufacture are formaldehyde-based. In the present research work a low-cost bioadhesive, based on the combination of thick spent sulfite liquor (TSSL) with wheat flour, was tested for the production of three-layer particleboards, at different conditions (particleboards target density, pressing time, pressing temperature, wood type and binder age). It was possible to produce particleboards with densities ranging from 682 kg m−3 to 783 kg m−3, at pressing temperatures from 180 to 210 °C, and pressing times between 8 and 10 min. All the particleboards produced in these conditions were in accordance with the internal bond strength requirements of standard EN 312 for particleboards type P2 (0.35 N mm−2). The best result (0.69 ± 0.01) N mm−2 was obtained for particleboards pressed for 10 minutes at 200 °C with the recycled wood mix. Regarding resin stability, the particleboards manufactured with the binder, stored for 30 days, presented good internal bond strength ((0.58 ± 0.02) N mm−2), above the requirements of standard EN 312 for particleboards type P2.  相似文献   

9.
Cast films of polymer blends essentially based on poly(vinyl butyral) (PVB) and equal ratios of polystyrene (PS) and poly(ethylene glycol) (PEG) were prepared from benzene and butyl alcohol solutions of the individual polymers. The effect of γ‐irradiation on the thermal decomposition and tensile mechanical properties was investigated. Moreover, the effect of γ‐irradiation on the dye affinity of PVB/PS and PVB/PEG for basic and acid dyestuffs was studied. The thermogravimetric analysis (TGA) study showed that the unirradiated PVB polymer films prepared in benzene displayed higher thermal stability than the same polymer films prepared in butanol. However, in all cases the thermal stability was found to increase with increasing γ‐irradiation dose. On the other hand, PVB/PS blend possesses higher thermal stability than PVB/PEG, as shown from the determination of the weight loss (%) at different heating temperatures, the temperatures of the maximum rate of reaction and the activation energy. While, pure PS films showed the stress‐strain behavior of brittle polymers, PVB/PS films showed the behavior of tough polymers with yielding properties. The results of dyeing clearly showed that the solvent type, blend composition, and irradiation dose are determining factors for the dye affinity for basic or acid dyes. For example, unirradiated PVB films prepared from butanol displayed a higher affinity for the basic and acid dyes than the same polymer prepared from the same benzene. However, PVB prepared from butanol showed higher affinity to the dyes than PS prepared from the same solvent. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

10.
Recently, there has been concern over the effects of accidentally released conductive carbon and graphite fibers on unprotected electrical circuits. Because of their thermal stability, such fibers could be released by the involvement of a resin matrix composite in a fire. A simple method based on thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) has been developed which permits the assessment of release potential from such composites. Dynamic TGA is used to determine temperatures at which significant events such as onset of resin matrix decomposition occur. Isothermal TGA permits a determination of the time required to produce releasable fibers at a given temperature. SEM examination of residues from TGA experiments serves to characterize their physical state which, in turn, permits a more precise assessment of release potential. This method has been used to examine a large number of materials composed of several different fibers in a variety of thermoset and thermoplastic matrices. It is concluded that release potential varies inversely with resin thermal-oxidative stability and directly with fiber stability. The matching of matrix resin char and fiber stabilities is especially effective in suppressing fiber release.  相似文献   

11.
Methyl methacrylate and ethylacrylate (MMA‐co‐EA) and methyl methacrylate and butylacrylate (MMA‐co‐BA) copolymeric processing aids were introduced into poly(vinyl chloride) (PVC)/33.3 wt % wood–sawdust composites containing 0.6 and 2.4 phr of calcium stearate lubricant. The properties of the composites were monitored in terms of processibility, rheology, thermal and structural stability, and mechanical properties. It was found that the mixing torque, wall shear stress, and extrudate swell ratio increased with increasing processing aid content because of increased PVC entanglement. MMA‐co‐BA (PA20) was found to be more effective than MMA‐co‐EA (K120 and K130), this being associated with the flexibility of the processing aids, and the dipole–dipole interactions between sawdust particles and polymeric processing aids. The sharkskin characteristic of the composite extrudate at high extrusion rate was moderated by the presence of processing aids. Adding the acrylic‐based processing aids and lubricant into PVC/sawdust composites improved the thermal and structural stability of the composites, which were evidenced by an increase in glass transition and decomposition temperatures and a decrease in polyene sequences, respectively. The changes in the mechanical properties of the composites involved a composite homogeneity, which was varied by degree of entanglement and the presence of wood sawdust, and un‐reacted processing aids left in the composites. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 782–790, 2004  相似文献   

12.
Phenol formaldehyde reaction solution (PFS) was used to synthesize urea–formaldehyde resins (PFSUF resins) with low formaldehyde content. In addition, the prepared PFSUF resins were used as adhesives to bond bamboo particleboards. Mechanical properties, fracture morphology, water absorption ratio, and dimensional stability of bamboo particleboards have been studied by tensile tests, SEM tests, water absorption analysis, and swelling ratio analysis, respectively. The results demonstrate that the main ingredient of PFS is phenol formaldehyde intermediate 2,4,6‐trimethylolphenate and proper amount of PFS can be used to reduce the formaldehyde content of UF resins effectively. The results also show that bamboo particleboards bonded with PFSUF resins exhibit better mechanical properties, water resistance, and dimensional stability than that bonded with pure UF resin. However, the results of TG and mechanical properties analysis exhibit that alternative curing agents to ammonium chloride should be studied to improve the curing properties of the PFSUF resins with low formaldehyde content. Taken together, this work provides a method of preparing environment‐friendly PFSUF resins with low phenol and low formaldehyde content and the prepared resins have potential application in wood industry. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42280.  相似文献   

13.
The effect of hybridization of wood fibers and metal hydroxides on the thermal stability of polypropylene (PP) based plastic composites is studied through thermo gravimetric analysis (TGA). The wood fiber increases thermal stability of the metal hydroxide hybridized WPC including aluminum hydroxide (AH) and magnesium hydroxide (MH). Hybridization with the AH increases decomposition temperature of the maximum loss rate (Tmax) of the PP due to reinforcement of residue, but the onset‐temperature of the PP decomposition is nearly shifted. However, hybridization with the MH increases both the onset‐temperature and the Tmax of the PP thermal degradation. Both AH and MH fillers increase the Tmax of the PP matrix decomposition with increment of their contents. Besides, the MH case shows higher thermal stability of the PP resin in WPC decomposition than the AH case at the same loading level. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40120.  相似文献   

14.
采用双酚A型环氧树脂为基体,短切玻璃纤维和纳米玻璃粉为填料,通过模压加工工艺制备了双酚A型环氧树脂基复合材料。使用热失重分析仪和扫描电子显微镜分析研究了纳米玻璃粉含量对复合材料热稳定性能的影响,同时利用Kissinger法和Flynn?Wall?Ozawa法求解了双酚A型环氧树脂基复合材料的热分解动力学参数。结果表明,添加短切玻璃纤维后,双酚A型环氧树脂的最大热分解温度从365 ℃提高至369 ℃,而随着纳米玻璃粉的加入,其最大热分解温度进一步提升5 ~16 ℃。且复合材料的残炭率在65.41 %~69.15 %之间,相比双酚A型环氧树脂、短切玻璃纤维增强双酚A型环氧树脂基复合材料分别提高了69.88 %~71.51 %、22.95 %~27.11 %。同时纳米玻璃粉的加入也使得复合材料的热分解活化能得到提升,最高为153.14 kJ/mol,相比双酚A型环氧树脂单体及短切玻璃纤维材料增强双酚A型环氧树脂基复合材料的热分解活化能135.65 kJ/mol、137.46 kJ/mol显著增加。结果表明,纳米玻璃粉的引入改变了双酚A型环氧树脂基复合材料的内部微观结构,从而提高了其热稳定性能。  相似文献   

15.
The objective of this work was to demonstrate the utility of lignin-based resins designed for application as an adhesive in the production of particleboard. Bond qualities of lignin-phenol-formaldehyde resins, phenolated-lignin-formaldehyde resins and commercial phenol-formaldehyde (PF-com) resin were assessed by using an automatic bonding evaluation system, prior to production of particleboards. In order to evaluate the quality of lignin-based resins, particleboards were produced and physical and mechanical properties were investigated. These physical properties included internal bond, modules of rupture and modulus of elasticity. Thickness swell and water absorption properties of particleboards bonded with lignin-based resins were also determined. The lignin-based resins have been reported previously in Part I of this study. The results showed that particleboards bonded with phenolated-lignin formaldehyde resins (up to 30% lignin content) exhibited similar physical and mechanical properties when compared to particleboards bonded with PF-com. The work has indicated that phenolated-lignin formaldehyde resins (up to 30% substitution level) can be used successfully as a wood adhesive for constructing particleboard. The performance of these panels is comparable to those of boards made using PF-com resin.  相似文献   

16.
The objective of this study was to improve the durability and stability of urea–formaldehyde-bonded wood products by decreasing the internal stress developed during the resin cure and by improving the ability of the cured system to withstand cyclic stresses. Urea–formaldehyde resins were modified either by incorporating urea-capped di-and trifunctional amines into the resin structure or by using the hydrochloride derivatives of some of these amines as the curing agent, or by both methods. This study supplements our previous work by examining the effects of additional amines and subjecting bonded products to additional testing. Solid wood joints bonded with a variety (7 of 15) of modified adhesives had resistance to cyclic stress superior compared to that of joints bonded with unmodified urea–formaldehyde adhesive; at least three of the modified adhesives approached the behavior of phenol–formaldehyde-bonded joints. Resistance to moist heat aging, although still inferior to that of phenol–formaldehyde-bonded joints, was significantly improved for joints bonded with modified adhesives over joints made with unmodified resins. The fracture behavior of joints made with modified adhesives was different from that of joints made with unmodified resins. The fracture energy was greater for joints made with three of four modified adhesives than for joints made with unmodified resins. Modified adhesives produced particleboards made with enhanced cyclic stress resistance. Formaldehyde emission from particleboards made with resins modified with urea-terminated amines was less than emission from boards made with unmodified resins. However, emissions from particleboards made with amine hydrochlorides were not improved compared to those from boards made with an ammonium chloride curing agent. © 1993 John Wiley & Sons, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    17.
    The varying polymer structures of wood adhesive‐type urea–formaldehyde resins resulting from different formaldehyde/first urea (F/U1) mole ratios used in the first step of resin manufacture were investigated using 13C. As the F/U1 mole ratio decreased progressively from 2.40 to 2.10 and to 1.80, the viscosity increase due to polymerization during resin synthesis became faster and resulted in decreasing side‐chain branches and increasing free urea amide groups in the resin structure. The resultant UF resins, with the second urea added to an overall F/(U1 + U2) of 1.15, showed viscosity decreases when heated with stirring or allowed to stand at room temperature that were also characteristic with the F/U1 mole ratios used in resin synthesis. The formaldehyde emission levels of particleboards bonded with the freshly made UF resins showed relatively small but similarly characteristic variations. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2800–2814, 2001  相似文献   

    18.
    Flexible clear PVC compounds tend to yellow and darken during and after exposure to gamma radiation. This has been an obstacle to their use in the medical market. The purpose of this investigation was to improve the gamma stability of flexible PVC. The variables of interest were resin molecular weight, plasticizer loading, stabilizer type, and choice of antioxidant. By screening resins, plasticizers, stabilizers, lubricants, and antioxidants, a promising candidate formulation was identified and optimized by statistically designed experiment, with hardness added as an additional variable. The criterion for improvement was color change after gamma irradiation, compared with an identical unexposed specimen. Thus, a series of gamma stable formulations were created exhibiting improved post irradiation color stability.  相似文献   

    19.
    Urea–formaldehyde-bonded wood products are limited to interior nonstructural applications because of their poor durability under cyclic moisture or humid environments. The stability of solid-wood joints and particleboards can be enhanced by bonding with urea–formaldehyde adhesives modified with di- and trifunctional amines at an effective resin formaldehyde-to-urea mol ratio (F/U) of 1.6; however, particleboard formaldehyde emissions were not improved over those from boards made with unmodified adhesives and were unacceptably high. The relative effectiveness of selected modifications was investigated at resin form aldehyde-to-urea (F/U) molar ratios of 1.4 and 1.2 Solid-wood joints and particleboards made with modified adhesives, an unmodified adhesive, and a phenol formaldehyde (PF) resin were subjected to cyclic soak-dry (cyclic stress) treatments and moist-heat aging. Formaldehyde emissions from particleboards were also determined. At F/U 1.4, the resistance of solid-wood joints made with modified adhesives to cyclic stress and moist-heat aging was equal to that of PF-bonded joints and superior to that of joints bonded with unmodified adhesive. The resistance of particleboards made with modified adhesives was greater than that of boards made with unmodified adhesive but less than that of PF-bonded board. Solid-wood joints and particleboards made with F/U 1.4 resins performed better than did those made with F/U 1.2 resins. Particleboards made with F/U 1.2 resins had formaldehyde emissions well below the standard, and room temperature aging or bonding at high temperature reduced emissions substantially. © 1994 John Wiley & Sons, Inc. 1
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    20.
    This investigation deals mainly with thermal stability and crosslinking density of EPDM/newsprint microfibers composites. The recycled newsprint microfibers were treated using a different ratio of acrylic styrene emulsion (5, 10, and 15 wt% fiber) as a bonding agent to reinforce EPDM rubber matrix. The effect of microfibers content, namely, 5 up to 50 phr (part per hundred part of rubber) and the effect of ionizing radiation on EPDM/newsprint microfibers composites properties were investigated. The microfibers structure and EPDM/microfibers composite were investigated using X‐ray diffraction and FTIR analysis; the results indicate that bonding has occurred between the treated newsprint microfibers and EPDM polymer matrix. EPDM/untreated newsprint microfibers composites have achieved higher crosslinking density than EPDM matrix up to 50 phr microfibers content and up to 100 kGy then decreased with increasing gamma irradiation dose. Meanwhile treatment of the microfibers using 10 wt% acrylic styrene leads to improve crosslinking density at any microfibers content. Thermogravimetric analysis (TGA) was carried out for the microfibers and their composites. TGA indicated that the thermal stability of microfiber was enhanced using acrylic styrene. Whereas there is a slight improvement in thermal stability and activation energy of the composites due to adding treated microfibers using 10 phr microfiber content treated using10 wt% acrylic styrene emulsion and irradiated with 60 kGy gamma radiation dose. J. VINYL ADDIT. TECHNOL., 25:E91–E106, 2019. © 2018 Society of Plastics Engineers  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号