首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M. Afshari  D. Jung  R. Kotek  A.E. Tonelli 《Polymer》2008,49(5):1297-1304
A nylon 6,6 complex with GaCl3 in nitromethane (4-5 wt% nylon 6,6) was prepared at 50-70 °C over 24 h for the purpose of disrupting the interchain hydrogen bonding between nylon 6,6 chains, resulting in amorphous nylon 6,6, and increasing the draw ratio for improving the performance of nylon 6,6 fibers. After drawing, complexed films and fibers were soaked in water to remove GaCl3 and regenerate pure nylon 6,6 films and fibers. FTIR, SEM, DSC, TGA, and mechanical properties were used for characterization of the regenerated nylon 6,6 films and fibers. The amorphous complexed nylon 6,6 can be stretched to high draw ratios at low strain rates, due to the absence of hydrogen bonding and crystallinity in these complexed samples. Draw ratios of 7-13 can be achieved for complexed fibers, under low strain rate stretching. This study indicates that nylon 6,6 fibers made from the GaCl3 complexed state, using a high molecular weight polymer, can reach initial moduli up to 13 GPa, compared to initial moduli of 6 GPa for commercial nylon 6,6 fibers. Lewis acid-base complexation of polyamides provides a way to temporarily suppress hydrogen bonding, potentially increasing orientation while drawing, and following regeneration of hydrogen bonding in the drawn state, to impart higher performance to their fibers.  相似文献   

2.
This is the first investigation to report the processing and properties of ultrahigh molecular weight polyethylene (UHMWPE)/functionalized activated nanocarbon (FANC) gel solutions with the aid of supercritical carbon dioxide (scCO2). The ultradrawing and ultimate tensile properties of scCO2UHMWPE and scCO2UHMWPE/FANC fibers were found to improve considerably compared to those of UHMWPE and UHMWPE/FANC fibers prepared in the conventional way. The maximum achievable draw ratio obtained for the optimal scCO2UHMWPE/FANC fibers drawn at 95°C reached 445. The highest tensile tenacity (σf) of the fully drawn scCO2UHMWPE/FANC fiber reached an extraordinary high value of 104 g/d, which is about 3.2 and 1.1 times of that of the optimal UHMWPE and UHMWPE/FANC fully drawn fibers, respectively. The σf obtained for the optimally fully drawn scCO2UHMWPE/FANC fiber is about 25 times of those of steel fibers and is the highest tensile tenacity ever reported for single‐stage drawn polymeric fibers. Considerably lower dynamic transition temperatures and evaluated thinner crystal lamellae nucleated off of extended chains or FANC nucleants were found for as‐prepared scCO2UHMWPE and scCO2UHMWPE/FANC fibers compared with UHMWPE and UHMWPE/FANC fibers, respectively. Specific surface area, morphological, and Fourier transform infrared analyses of the activated nanocarbon (ANC), acid‐treated activated nanocarbon (ATANC) and FANC nanofillers and investigation of thermal, morphological, and orientation factor properties of the as‐prepared and drawn UHMWPE, UHMWPE/FANC, scCO2UHMWPE, and scCO2UHMWPE/FANC fibers were performed to understand the remarkable ultradrawing, dynamic transition, and ultimate tensile properties obtained for scCO2UHMWPE and scCO2UHMWPE/FANC fibers. POLYM. ENG. SCI., 59:1462–1471 2019. © 2019 Society of Plastics Engineers  相似文献   

3.
This investigation aims to improve the ultradrawing and ultimate tensile properties of ultrahigh molecular weight polyethylene (UHMWPE) fibers by incorporating small amounts of functionalized activated nanocarbon particles with a wide range of specific surface areas (ca. 100–1,400 m2/g) during gel spinning processes of UHMWPE fibers. The ultradrawing, ultimate tensile, orientation properties, and “microfibril” characteristics of UHMWPE/functionalized activated nanocarbon fibers was discovered to improve considerably with the increase in specific surface areas of functionalized activated nanocarbon. An extraordinary high ultimate tensile strength at 95.8 g/d was obtained for the best prepared UHMWPE/functionalized activated nanocarbon drawn fiber. This value is the highest value ever reported for one‐stage drawn UHMWPE fibers and is about 2.9 times that of the UHMWPE drawn fiber prepared in this study. In addition to thermal, ultimate tensile, and orientation factor properties of as‐prepared and/or drawn UHMWPE/functionalized activated nanocarbon fibers, specific surface area, Fourier transform infrared, and morphological analyses of original and functionalized activated nanocarbons were performed to comprehend the considerably improved ultradrawing, ultimate tensile properties, and microfibril characteristics of the UHMWPE/functionalized activated nanocarbon fibers. POLYM. ENG. SCI., 58:980–990, 2018. © 2017 Society of Plastics Engineers  相似文献   

4.
The drawing behavior and mechanical properties of as‐spun and highly oriented nylon 66 fibers drawn in supercritical carbon dioxide (SCCO2) were investigated. Conditions including different temperatures, CO2 pressures, and plasticizers with different polarity were systematically studied. Results indicate that CO2 is an efficient plasticizer for as‐spun nylon 66 fibers as shown by decreases in the draw stress. In contrast, CO2 shows only a slight influence on the drawability of highly oriented nylon 66 fiber. The effect of other plasticizers such as water, methanol, and ethanol on the drawability of nylon 66 fibers is very similar to that of CO2. Tenacity and modulus of one‐stage drawn fibers were less than 0.8 and 5.0 GPa, respectively. Fibers with the highest tenacity and modulus, 0.96/5.04 and 1.06/5.04 GPa, were obtained by two‐stage drawing in SCCO2 from as‐spun and drawn nylon 66 fibers, respectively. The main reason for the extremely low draw ratios (<6.0) of nylon 66 fibers was the presence of hydrogen bonds in the crystalline phase. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2282–2288, 2004  相似文献   

5.
Recent advancements in SC CO2 mediated synthesis and material processing have led to polymer‐polymer blends and composite materials with complex morphologies, exhibiting long‐range order and orientation on multiple length‐scales from the nanometer to the centimeter scale. The material under consideration in this work is a polyamide 6,6 (nylon)/poly (methyl methacrylate) (PMMA) fiber‐reinforced composite that was fabricated in a unique SC CO2 assisted process. The tensile and flexural properties of these unique composites are studied and the evolution of damage and energy dissipation are monitored through cyclic loading and microscopic analysis of post‐stressed composite cross sections. It is shown that this morphology leads to improved flexural modulus and increased ultimate strength with only a small decrease in tensile modulus. These composites also exhibited significant improvements in stress distribution and load transfer without the use of fiber sizing agents for fiber/matrix compatibilization.  相似文献   

6.
Systemic investigation of the influence of the plain and functionalized carbon nanotube (CNT) contents on the ultradrawing properties of ultrahigh molecular weight polyethylene/carbon nanotubes (UHMWPE/CNTs, FCy) and UHMWPE/functionalized CNTs (FCfx‐y) as‐prepared fibers are reported. In a way similar to those found for the orientation factor values, the achievable draw ratios (Dra) of the FCy and FCfx‐y as‐prepared fibers approached a maximum value as their CNT and/or functionalized CNT contents reached their corresponding optimum values. The maximum Dra values obtained for FCfx‐0.001 as‐prepared fiber specimens prepared at varying maleic anhydride grafted polyethylene (PE‐g‐MAH)/modified CNTs weight ratios were significantly higher that of the FC0.0015 as‐prepared fiber specimen prepared at the optimum plain CNT content. Tensile property analysis further suggested that excellent orientation and tensile properties of the drawn FCy and FCfx‐y fibers can be obtained by ultradrawing the fibers prepared at their optimum plain CNT and/or functionalized CNT contents. To understand the interesting orientation, ultradrawing and tensile properties of FCy and FCfx‐y fiber specimens, FTIR, specific surface area, and SEM morphology analysis of the plain and functionalized CNTs were performed in this study. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers  相似文献   

7.
The influence of formation temperature on the ultradrawing properties of ultrahigh‐molecular‐weight polyethylene/carbon nanotube (UHMWPE/CNT) fiber specimens is investigated. Gel solutions of UHMWPE/CNT with various CNT contents were gel‐spun at the optimum concentration and temperature but were cooled at varying formation temperatures in order to improve the ultradrawing and tensile properties of the UHMWPE/CNT composite fibers. The achievable draw ratio (Dra) values of UHMWPE/CNT as‐prepared fibers reach a maximum when they are prepared with the optimum CNT content and formation temperature. The Dra value of UHMWPE/CNT as‐prepared fibers produced using the optimum CNT content and formation temperature is about 33% higher than that of UHMWPE as‐prepared fibers produced using the optimum concentration and formation temperature. The percentage crystallinity (Wc) and melting temperature (Tm) of UHMWPE/CNT as‐prepared fiber specimens increase significantly as the formation temperature increases. In contrast, Wc increases but Tm decreases significantly as the CNT content increases. Dynamic mechanical analysis of UHMWPE and UHMWPE/CNT fiber specimens exhibits particularly high α‐transition and low β‐transition, wherein the peak temperatures of α‐transition and β‐transition increase dramatically as the formation temperature increases and/or CNT content decreases. In order to understand these interesting drawing, thermal and dynamic mechanical properties of the UHMWPE and UHMWPE/CNT as‐prepared fiber specimens, birefringence, morphological and tensile studies of as‐prepared and drawn fibers were carried out. Possible mechanisms accounting for these interesting properties are proposed. Copyright © 2010 Society of Chemical Industry  相似文献   

8.
The continuous production of ultra‐high‐molecular‐weight polyethylene (UHMWPE) filaments was studied by the direct roll forming of nascent reactor powders followed by subsequent multistage orientation drawing below their melting points. The UHMWPE reactor powders used in this study were prepared by the polymerization of ethylene in the presence of soluble magnesium complexes, and they exhibited high yield even at low reaction temperatures. The unique, microporous powder morphology contributed to the successful compaction of the UHMWPE powders into coherent tapes below their melting temperatures. The small‐angle X‐ray scattering study of the compacted tapes revealed that folded‐chain crystals with a relatively long‐range order were formed during the compaction and were transformed into extended‐chain crystals as the draw ratio increased. Our results also reveal that the drawability and tensile and thermal properties of the filaments depended sensitively on both the polymerization and solid‐state processing conditions. The fiber drawn to a total draw ratio of 90 in the study had a tensile strength of 2.5 GPa and a tensile modulus of 130 GPa. Finally, the solid‐state drawn UHMWPE filaments were treated with O2 plasma, and the enhancement of the interfacial shear strength by the surface treatment is presented. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 718–730, 2005  相似文献   

9.
The carbon nanotubes (CNTs) contents, ultrahigh‐molecular‐weight polyethylene (UHMWPE) concentrations and temperatures of UHMWPE, and CNTs added gel solutions exhibited significant influence on their rheological and spinning properties and the drawability of the corresponding UHMWPE/CNTs as‐prepared fibers. Tremendously high shear viscosities (ηs) of UHMWPE gel solutions were found as the temperatures reached 140°C, at which their ηs values approached the maximum. After adding CNTs, the ηs values of UHMWPE/CNTs gel solutions increase significantly and reach a maximum value as the CNTs contents increase up to a specific value. At each spinning temperature, the achievable draw ratios obtained for UHMWPE as‐prepared fibers prepared near the optimum concentration are significantly higher than those of UHMWPE as‐prepared fibers prepared at other concentrations. After addition of CNTs, the achievable draw ratios of UHMWPE/CNTs as‐prepared fibers prepared near the optimum concentration improve consistently and reach a maximum value as their CNTs contents increase up to an optimum value. To understand these interesting drawing properties of the UHMWPE and UHMWPE/CNTs as‐prepared fibers, the birefringence, thermal, morphological, and tensile properties of the as‐prepared and drawn fibers were investigated. Possible mechanisms accounting for these interesting properties are proposed. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
Highly oriented gel‐spun ultrahigh molecular weight polyethylene (UHMWPE) fibers possess many outstanding properties desirable for composite materials but their adhesion to such matrices as epoxy is poor. This article describes the combined effects of drawing and surface modification on the bulk and surface properties of gel‐cast UHMWPE films emphasizing the effects of etching on both undrawn and drawn films. Drawing the films yields a fibrillar structural hierarchy similar to UHMWPE fibers and a significant increase in orientation, melting point, modulus, and strength. The effects of drawing on bulk properties were more significant than those of etching. The poor adhesion of epoxy to the smooth, fibrillar, and relatively nonpolar drawn film surface improves significantly with oxidization and roughening on etching. The interlaminar shear failure occurred cohesively in the UHMWPE, and thus the interlaminar shear failure strength was greater for the drawn UHMWPE with its greater tensile strength. Nitrogen plasma etching yielded the best results, both removing any low molecular weight surface layer and etching the UHMWPE beneath. Oxygen plasma etching enhanced wetting but was too harsh, causing extensive surface degradation and a significant reduction in mechanical properties. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 405–418, 1999  相似文献   

11.
High‐strength and porous ultrahigh‐molecular‐weight polyethylene (UHMWPE) fibers have been prepared through a two‐stage drawing process. Combined with tensile testing, scanning electron microscopy, and small‐angle X‐ray scattering, the mechanical properties, porosity, and microstructural evolution of the UHMWPE fibers were investigated. The first‐stage cold drawing of the gel‐spun fibers and subsequent extraction process produced fibers with oriented lamellae stacks on the surface and plentiful voids inside but with poor mechanical properties. The second‐stage hot drawing of the extracted fibers significantly improved the mechanical properties of the porous fibers because of the formation of lamellar backbone networks on the surface and microfibrillar networks interwoven inside to support the voids. With various processing conditions, the optimized mechanical properties and porosity of the prepared UHMWPE fibers were obtained a tensile strength of 1.31 GPa, a modulus of 10.1 GPa, and a porosity of 35%. In addition, a molecular schematic diagram is proposed to describe structural development under two‐stage drawing, including void formation and lamellar evolution. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42823.  相似文献   

12.
Blends of polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) were melt spun using a high‐speed winding process in a single‐screw extruder combined with a spinning setup. The filaments had a single Tm and Tg, which indicates excellent compatibility in both the amorphous and crystalline phases. Birefringence and wide angle X‐ray measurements indicated that compounding PEN into PET suppresses stress‐induced orientation and decreases the stressinduced crystallization in the filaments. Adding PEN to PET relaxes the formation of skin‐core structures for as‐spun fibers and reduces the occurrence of broken filaments. Although the addition of PEN reduced crystallinity, it did not affect the tenacity and the shrinkage of the compounded filaments. The elongation of the fibers could be reduced by 30% to 40%, eliminating the need for a further drawing. These results are attributed to PEN's rigid backbone. Adding PEN to PET improves PETs spinnability during high‐speed spinning.  相似文献   

13.
High‐strength poly(ethylene terephthalate) (PET) fibers were obtained using low molecular weight (LMW) polymervia horizontal isothermal bath (hIB), followed by postdrawing process. We investigated the unique formations of different precursors, which differentiated in its molecular orientation and crystalline structures from traditional high‐speed spinning PET fibers. Sharp increase in crystallinity was observed after drawing process even though the fibers showed almost no any crystallinity before the drawing. Properties of as‐spun and drawn hIB and control filaments at different process conditions were compared. As would be expected, performances of resulted treated undrawn and drawn fibers have dramatically improved with developing unique morphologies. Tenacities more than 8 g/d for as‐spun and 10 g/d for drawn treated fibers after just drawn at 1.279 draw ratio were observed. These performances are considerably higher than that of control fibers. An explanation of structural development of high‐strength fibers using LMW polymer spun with hIB is proposed. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42747.  相似文献   

14.
Nanocomposite fibers of ultra high molecular weight polyethylene (UHMWPE) and organic montmorillonite (OMMT) were successfully prepared by a melt‐spinning process. The evolution of the microstructures of the nanocomposite fibers in the drawing process was preliminarily studied by X‐ray diffraction (XRD), differential scanning calorimetry, and small‐angle X‐ray scatters. With the increase of draw ratio values, the crystallinity of the nanocomposite fibers increased, the grain size decreased, and the folded chain crystals gradually transformed into extended chain crystals. The results suggested the evolution of the nanocomposite fibers was similar with that of the fibers made by gel‐spun drawing process. The addition of OMMT in UHMWPE improved the fluidity of the composites yet without affecting the crystal structure of UHMWPE in the drawing process. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3930–3936, 2013  相似文献   

15.
A coating of Nylon 6,6 or 6,12 was used to improve the penetration resistance of ultra high molecular weight polyethylene (UHMWPE) fabric that would be potentially useful in the manufacture of flexible body armor against spike/knife threats. Quasi‐static test results for the spike penetrator showed a 77% and 86% improvement in the puncture resistance of Nylon 6,6 and Nylon 6,12 coated UHMWPE (respectively) over a neat fabric target of equivalent areal densities. Dynamic impact testing demonstrated dramatic improvement in the puncture resistance of nylon‐coated fabrics while only a slight improvement in stab resistance was observed comparing samples with equivalent areal densities. Photography of ruptured areas after quasi‐static testing revealed limited fiber motion or fiber stretching with no evidence of fiber pullout for nylon‐coated fabric samples in contrast to neat fabric. This suggests that there was a significant increase in energy absorption by nylon‐coated fabrics at impact. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40350.  相似文献   

16.
Innovative supercritical carbon dioxide (scCO2)-assisted ultrahigh-molecular-weight-polyethylene (UHMWPE)/modified bacterial cellulose (MBC) as-spun fibers were found to display substantially lower dynamic transition temperatures than those acquired for scCO2-assisted UHMWPE or UHMWPE/MBC as-spun fibers prepared without scCO2-assistance or incorporation of MBC nanofibers. Multiple-step drawing methods were first-time applied to these finely ''relaxed'' scCO2-assisted UHMWPE/MBC fibers and considerably improved their achievable draw ratios (Dras), orientation factor (fos), and tensile tenacities (σtts). The best five-step drawn scCO2UHMWPE/MBC fiber displayed a particularly high σtt of 135 g d−1, which was ~35, ~3.75, and ~1.7 fold of σtts acquired for good steel fiber and the most appropriate single-step drawn scCO2-assisted UHMWPE and UHMWPE/MBC fibers, respectively. The particularly high Dras, fo, and σtts acquired for the best multiple-step drawn scCO2-assisted UHMWPE/MBC fibers is ascribed to their more ''relaxed'' UHMWPE structures, thinner lamellae, and successive increased drawing temperature in the multiple-step drawing processes.  相似文献   

17.
Dimensions of conical dies were found to have a significant influence on thermal, morphological, orientation, ultradrawing, and dynamic mechanical properties of the as‐prepared and/or drawn ultrahigh molecular weight polyethylene (UHMWPE) fiber specimens prepared in this study. Many demarcated “micro‐fibrils” were found paralleling to fiber direction of the as‐prepared UHMWPE fiber specimens. The percentage crystallinity, melting temperatures, orientation factor (fo) and achievable draw ratio (Dra) values of each as‐prepared UHMWPE fiber specimen prepared at a fixed length of outlet land reach a maximum value, as the entry angles of the conical die approach the optimum value at 75°. The maximum fo and Dra values obtained for each F2075‐y as‐prepared fiber series specimens prepared using the optimum entry angle reach another maximum value as their length of outlet land approach the optimum value of 6.5 mm. The ultimate tensile strengths and moduli of the drawn UHMWPE fibers prepared at the optimum entry angle and length of outlet land are significantly higher than those of fibers prepared at other conditions but stretched to the same draw ratio. Possible reasons accounting for the above interesting properties were discussed in this study. POLYM. ENG. SCI., 2013. © 2013 Society of Plastics Engineers  相似文献   

18.
Four carbon nanotube (CNT)‐filled polymer blends, i.e., CNT‐filled polyethylene terephthalate (PET)/polyvinylidene fluoride, PET/nylon 6,6, PET/polypropylene, and PET/high‐density polyethylene blends, have been injection‐molded and characterized in terms of their microstructures, electrical conductivities, and mechanical properties. The distribution of CNTs in the polymer blends has been examined based on their wetting coefficients and minimization of the interfacial energy. The electrical conductivity and mechanical properties have been related to the cocontinuous polymer blends, the conductive path formed by CNTs, the CNT distribution, and the intrinsic properties of the constituent polymers. It is found that to obtain a CNT‐filled polymer composite with both high electrical conductivity and good mechanical properties, it is preferred that most CNTs distribute in one polymer phase, while the other polymer phase(s) remain neat. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 477–488, 2006  相似文献   

19.
In this work, a compatibilizer (UHMWPE‐g‐GO) with large specific surface was prepared from graphene oxide (GO) and ultra‐high molecular weight polyethylene (UHMWPE). First, GO was modified by 2, 3‐epoxypropyltrimethylammonium chloride (GTA), subsequently grafted with UHMWPE. UHMWPE‐g‐GO was used to compatibilize the immiscible monomer casting (MC) nylon/UHMWPE blends. With the addition of very low content of UHMWPE‐g‐GO, the compatibility of UHMWPE and the matrix (MC nylon) was remarkably improved without visible agglomerates, which was proved by photographs, scanning electron microscope, dynamic thermomechanical analysis, and contact angle measurement. Therefore, thermal stability, mechanical and tribological properties were obviously increased. A dramatic increment of 94.1% in the impact strength and a decrement of 39.4% in the coefficient friction were observed in the presence of UHMWPE‐g‐GO in the immiscible polymer blends. The approach used in this work was an efficient strategy for immiscible polymer blends with ultra‐high molecular weight. POLYM. ENG. SCI., 57:335–344, 2017. © 2016 Society of Plastics Engineers  相似文献   

20.
Ultradrawing and ultimate tensile properties of ultrahigh molecular weight polyethylene (UHMWPE) composite fibers were successfully improved by the addition of nanoalumina (NAL), acid treated nanoalumina (ATNAL), and/or functionalized nanoalumina (FNAL). As evidenced by FTIR and TEM analyses, maleic anhydride grafted polyethylene (PEg‐MAH) molecules were successfully grafted onto ATNAL fillers. The specific surface areas of FNAL fillers reached a maximal value at 516 m2/g, as they were modified using an optimal weight ratio of PEg‐MAH to ATNAL at 8. Achievable draw ratio (Dra) values of UHMWPE/NAL (F100Ay), UHMWPE/ATNAL (F100Ax%‐8‐y) and/or UHMWPE/FNAL (F100Ax%‐8FPEzy) as‐prepared fibers approached a maximal value as NAL, ATNAL, and/or FNAL contents reached an optimal value at 0.1, 0.1, and 0.075 phr, respectively. The maximal Dra values of F100Ax%‐8FPEz0.075 as‐prepared fiber specimens were significantly higher than those of F100A0.1 and F100Ax%‐8‐0.1 as‐prepared fiber specimens. In which, the maximal Dra values obtained for F100Ax%‐8FPEz0.075 as‐prepared fibers reached another maximal value as FNAL fillers were modified using an optimal weight ratio of PEg‐MAH to ATNAL at 8. The ultimate tensile strength value of F100A2%‐8FPE80.075 drawn fiber reached 6.4 GPa, which was about 2.4 times of that of the UHMWPE drawn fibers prepared at the same optimal UHMWPE concentration and drawing condition. POLYM. ENG. SCI., 55:2205–2214, 2015. © 2015 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号