首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
This article describes the covalent immobilization of penicillin G acylase (PGA) onto glutaraldehyde-activated NH2-PVC membranes. The immobilized enzyme was used for 6-aminopenicillanic acid production from penicillin hydrolysis. Parameters affecting the immobilization process, which affecting the catalytic activity of the immobilized enzyme, such as enzyme concentration, immobilization's time and temperature were investigated. Enzyme concentration and immobilization's time were found of determine effect. Higher activity was obtained through performing enzyme immobilization at room temperature. Both optimum temperature (35°C) and pH (8.0) of immobilized enzyme have not been altered upon immobilization. However, immobilized enzyme acquires stability against changes in the substrate's pH and temperature values especially in the higher temperature region and lower pH region. The residual relative activities after incubation at 60°C were more than 75% compared to 45% for free enzyme and above 50% compared to 20% for free enzyme after incubation at pH 4.5. The apparent kinetic parameters KM and VM were determined. KM of the immobilized PGA (125.8 mM) was higher than that of the free enzyme (5.4 mM), indicating a lower substrate affinity of the immobilized PGA. Operational stability for immobilized PGA was monitored over 21 repeated cycles. The catalytic membranes were retained up to 40% of its initial activity after 10.5 working h. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

2.
Naringinase (EC 3.2.1.40) from Penicillium sp was immobilized by covalent binding to woodchips to improve its catalytic activity. The immobilization of naringinase on glutaraldehyde‐coated woodchips (600 mg woodchips, 10 U naringinase, 45 °C, pH 4.0 and 12h) through 1% glutaraldehyde cross‐linking was optimized. The pH–activity curve of the immobilized enzyme shifted toward a lower pH compared with that of the soluble enzyme. The immobilization caused a marked increase in thermal stability of the enzyme. The immobilized naringinase was stable during storage at 4 °C. No loss of activity was observed when the immobilized enzyme was used for seven consecutive cycles of operations. The efficiency of immobilization was 120%, while soluble naringinase afforded 82% efficacy for the hydrolysis of standard naringin under optimal conditions. Its applicability for debittering kinnow mandarin juice afforded 76% debittering efficiency. Copyright © 2005 Society of Chemical Industry  相似文献   

3.
The immobilization of Clostridium perfringens phospholipase C was studied for the first time and the catalytic properties of the immobilized enzyme were investigated for the hydrolysis of sphingomyelin to produce ceramide. Ceramide is of great commercial value in the cosmetic and pharmaceutical industries for use in, for example, hair and skin care products, owing to its major role in maintaining the water-retaining properties of the epidermis. The feasibility of enzymatic production of ceramide through hydrolysis of sphingomyelin has previously been proven. In order to improve the reusability of the enzyme, the present study focused on the immobilization of phospholipase C in the production of ceramide from sphingomyelin. By screening nine different carriers, we found that the enzyme immobilized on Lewatit had the highest catalytic activity towards sphingomyelin hydrolysis. Prewetting Lewatit with ethanol led to higher enzyme fixation on the carrier, but the activity of the enzyme was decreased. Increasing the initial enzyme concentration resulted in more enzyme adsorption on the carrier, where the specific activity was increased. Through optimization of the reaction using the immobilized enzyme, the optimal temperature was around 46 °C and the optimal water volume was 3.5%. The reaction had little dependence on pH. After seven recycles, immobilized enzyme retained around 70% of the initial activity. Immobilized enzyme was deactivated irregularly when stored at room temperature, but followed first-order deactivation when stored at 40 °C.  相似文献   

4.
Poly (methyl methacrylate) (PMMA)–starch composites were prepared by emulsion polymerization technique for L‐asparaginase (L‐ASNase) immobilization as highly activated support. The hydroxide groups on the prepared composites offer a very simple, mild and firm combination for enzyme immobilization. The pure PMMA and PMMA‐starch composites were characterized as structural, thermal and morphological. PMMA‐starch composites were found to have better thermal stability and more hydrophilic character than pure PMMA. L‐ASNase was immobilized onto PMMA‐starch composites contained the different ratio of starch (1, 3, 5, and 10 wt %). Immobilized L‐ASNase showed better performance as compared to the native enzyme in terms of thermal stability and pH. Km value of immobilized enzyme decreased approximately eightfold compared with the native enzyme. In addition to, immobilized L‐ASNase was found to retain 60% of activity after 1‐month storage period at 4 °C. Therefore, PMMA‐starch composites can be provided more advantageous in terms of enzymatic affinity, thermal, pH and storage stability as L‐ASNase immobilization matrix. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43421.  相似文献   

5.
A copolymer of acrylic acid with divinylbenzene was synthesized by suspension polymerization. This polymer is an effective carrier. Penicillin acylase was immobilized on this carrier to convert benzylpenicillin to 6‐aminopenicillanic acid, which may be employed in the manufacture of semisynthetic penicillins. Factors that affect the activity of immobilized penicillin acrylase, such as temperature, pH, and amount of native enzyme, were studied. Under suitable conditions, the activity and activity recovery of the immobilized enzyme were 3100 U/g (dry carrier, p‐dimethylaminobenzaldehyde method) and 59.7%, respectively. The immobilized penicillin acylase shows a remarkable increase in stability. At 40°C and pH 8.0 the value of the kinetic Michaelis–Menten constant (Km) of the immobilized enzyme is 2.8 × 10?3 mol/L, and the value of activation energy of enzyme catalysis is 71.5 kJ/mol. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2067–2069, 2002  相似文献   

6.
Mushroom tyrosinase was immobilized by adsorption onto the totally cinnamoylated derivative of D ‐sorbitol. The polymerization and cross‐linking of the derivative initially obtained was achieved by irradiation in the ultraviolet region, where this prepolymer shows maximum sensitivity. Immobilization of tyrosinase on this support involves a process of physical adsorption and intense hydrophobic interactions between the cinnamoyl groups of the support and related groups of the enzyme. The pH value, enzyme concentration and immobilization time were all important parameters affecting immobilization efficiency; also, enzyme immobilization efficiency correlated well with the tyrosinase isoelectric point. The immobilized enzyme showed an optimum measuring pH of 3.5 and greater activity at acid and neutral pH values than the soluble enzyme. The optimal reaction temperature was 35 °C and the temperature profile was broader than that of the free enzyme or of the enzyme immobilized on other supports. The apparent Michaelis constant of mushroom tyrosinase immobilized on the SOTCN derivative acting on 4‐tert‐butylcatechol (TBC) was 0.40 ± 0.02 mmol dm?3, which was lower than for the soluble enzyme, suggesting that the affinity of this enzyme for this substrate was greater when immobilized than when in solution. Immobilization stabilized the enzyme and made it less susceptible to activity loss during storage at pH values in the range 4–5.5, and the suicide inactivation of the immobilized tyrosinase was null or negligible in a reaction medium with 4‐tert‐butylcatechol at a concentration of 0.4 mmol dm?3. The results show that cinnamic carbohydrate esters of D ‐sorbitol are an appropriate support for tyrosinase immobilization and could be of use for several tyrosinase applications. Copyright © 2005 Society of Chemical Industry  相似文献   

7.
Invertase was immobilized onto the dimer acid‐co‐alkyl polyamine after activation with 1,2‐diamine ethane and 1,3‐diamine propane. The effects of pH, temperature, substrate concentration, and storage stability on free and immobilized invertase were investigated. Kinetic parameters were calculated as 18.2 mM for Km and 6.43 × 10?5 mol dm?3 min?1 for Vmax of free enzyme and in the range of 23.8–35.3 mM for Km and 7.97–11.71 × 10?5 mol dm?3 min?1 for Vmax of immobilized enzyme. After storage at 4°C for 1 month, the enzyme activities were 21.0 and 60.0–70.0% of the initial activity for free and immobilized enzyme, respectively. The optimum pH values for free and immobilized enzymes were determined as 4.5. The optimum temperatures for free and immobilized enzymes were 45 and 50°C, respectively. After using immobilized enzyme in 3 days for 43 times, it showed 76–80% of its original activity. As a result of immobilization, thermal and storage stabilities were increased. The aim of this study was to increase the storage stability and reuse number of the immobilized enzyme and also to compare this immobilization method with others with respect to storage stability and reuse number. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1526–1530, 2004  相似文献   

8.
The ability of immobilized penicillin acylase from E. coli to retain a remarkable catalytic activity in solid‐state systems has been demonstrated. Stabilization of immobilized penicillin acylase by inorganic salt hydrates allowed us to exploit nearly the whole catalytic activity of the enzyme at a very low water content. Using this technique, enzymatic synthesis of ampicillin in solid‐state systems was performed with high yields (up to 70% starting from equimolar mixture of reagents) and rates comparable to the corresponding values in homogeneous solutions and heterogeneous systems, “aqueous solution‐precipitate”. Peculiarities of the enzymatic solid‐state acyl transfer process, such as absence of the clear‐cut maximum on the ampicillin accumulation curves and dependence of the synthetic efficiency on the enzyme loading, have been observed. The space‐time yield of solid‐state enzymatic ampicillin synthesis was shown to be up to ten times higher compared to the homogeneous solutions and heterogeneous “aqueous solution‐precipitate” systems.  相似文献   

9.
BACKGROUND: The aim of this study was to evaluate the feasibility of enzyme immobilization in PVA particles through extrusion of LentiKat®Liquid in polyethylene glycol. Inulinase, with invertase activity for sucrose hydrolysis, was used as model system. RESULTS: Inulinase was effectively immobilized in PVA particles. The pH optimum of the enzyme activity was broadened for lower pH values. Mechanical instability of the PVA under prolonged incubation above 55 °C was observed. A 1.8‐fold increase in the apparent KM (Michaelis constant) suggests diffusion limitations as a result of immobilization. The immobilized biocatalyst exhibited considerable operational stability, since a decrease of roughly 10% in the product yield after 24 h biotransformation runs was observed in trials performed at 50 °C, following 20 repeated, consecutive batches. CONCLUSION: The results obtained highlight the potential of PVA‐based particles obtained through extrusion into PEG for the production of suitable biocatalysts for application in large‐scale processes. Copyright © 2008 Society of Chemical Industry  相似文献   

10.
Glutaryl-7-aminocephalosporanic acid(GL-7-ACA) acylase is an important enzyme for the production of 7-ACA (7-aminocephalosporanic acid). For an efficient immobilization of GL-7-ACA acylase, various carriers were tested. A high-porous hydrophilic carrier (FPHA) among various carriers tested was found to be the best for the immobilization of GL-7-ACA acylase. In order to develop an effective immobilization method of GL-7-ACA acylase, the parameters that affect the immobilization of GL-7-ACA acylase were also investigated under different conditions of buffer solution and different concentrations of glutaraldehyde. The highest value of GL-7-ACA acylase activity (70 Unit/g-matrix) was obtained when immobilized with 1% glutaraldehyde in a 0.1 M Tris buffer (pH 8.0). Also, in order to enhance the activity of the immobilized GL-7-ACA acylase, unreacted aldehyde groups were quenched by reaction with a low molecular weight agent such as L-lysine after immobilization. The highest activity of immobilized GL-7-ACA acylase was obtained at 0.1% of L-lysine. The immobilized GL-7-ACA acylase was tested for long-term stability and it was found that the activity was retained at about 62% of the initial value after 72 times of reuse at 25 ‡C.  相似文献   

11.
Chitosanase obtained fromPenicillium sp.ZD-Z1 was immobilized on DEAE cellulose with glutaraldehyde by cross-linking reaction. The optimal conditions of immobilization were as follows: 0.1 g DEAE cellulose was treated with 5 ml 5% glutaraldehyde solution; then 2.3 mg chitosanase was immobilized on the carrier. The optimal temperature and pH was 60 °C and 4.0, and the K m value was 18.87 g/L. Under optimal conditions, the activity of immobilized enzyme is 1.5 U/g, and the recovery of enzyme activity is 81.3%. After immobilization, the optimal temperature and K m value increased (from 50 °C to 60 °C, from 2.49 g/L to 18.87 g/L), whereas the optimal pH was reduced (from 5.0 to 4.0). The enzyme activity loss was less than 20% after 10 times batch reaction; the immobilized enzyme showed good operation stability.  相似文献   

12.
A method has been developed to immobilize lipase from Candida rugosa on modified natural wool fibers by means of graft copolymerization of poly ethylacrylate in presence of potassium persulphate and Mohr’s salt redox initiator. The activities of free and immobilized lipase have been studied. FTIR spectroscopy, scanning electron microscopy, and the Bradford method were used to characterize lipase immobilization. The efficiency of the immobilization was evaluated by examining the relative enzymatic activity of free enzyme before and after the immobilization of lipase. The results showed that the optimum temperature of immobilized lipase was 40 °C, which was identical to that of the free enzyme, and the immobilized lipase exhibited a higher relative activity than that of free lipase over 40 °C. The optimal pH for immobilized lipase was 8.0, which was higher than that of the free lipase (pH 7.5), and the immobilization resulted in stabilization of enzyme over a broader pH range. The kinetic constant value (km) of immobilized lipase was higher than that of the free lipase. However, the thermal and operational stabilities of immobilized lipase have been improved greatly.  相似文献   

13.
The effects of glutaraldehyde, enzyme concentrations and reactants volumes, ionic strength, pH value and carrier particle diameter on immobilization of penicillin acylase onto acrylic carriers were studied. The activity of immobilized enzyme preparations was also studied over a range of pH values and temperatures and thermal and pH stabilities were determined. The use of the immobilized preparation for penicillin G hydrolysis in a batch reactor was investigated. The immobilized enzyme gave a significant reduction in hydrolysis time compared to hydrolysis by the native enzyme.  相似文献   

14.
Mushroom tyrosinase was covalently immobilized on a poly(acrylic acid)‐type, weakly acidic cation‐exchange resin (Daiaion WK10, Mitsubishi Chemical Corp., Tokyo, Japan) with 1‐ethyl‐3‐(3‐dimethylaminopropyl)carbodiimide hydrochloride salt as a water‐soluble carbodiimide. Ion‐exchange resins immobilized with tyrosinase were packed in one column, and crosslinked chitosan beads prepared with epichlorohydrin were packed in another column. The enzymatic activity was modified by covalent immobilization, and the immobilized tyrosinase had a high activity in the temperature range of 30–45°C and in the pH range of 7–10. When solutions of various alkylphenols were circulated through the two columns packed with tyrosinase‐immobilized ion‐exchange resins and crosslinked chitosan beads at 45°C and pH 7 (the optimum conditions determined for p‐cresol), alkylphenols were effectively removed through quinone oxidation with immobilized tyrosinase and subsequent quinone adsorption on chitosan beads. The use of chemically crosslinked chitosan beads in place of commercially available chitosan beads was effective in removing alkylphenols from aqueous solutions in shorter treatment times. The removal efficiency increased with an increase in the amount of crosslinked chitosan beads packed in the column because the rate of quinone adsorption became higher than the rate of enzymatic quinone generation. The activity of tyrosinase was iteratively used by covalent immobilization on ion‐exchange resins. One of the most important findings obtained in this study is the fact that linear and branched alkylphenols suspected of weak endocrine‐disrupting effects were effectively removed from aqueous solutions. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
BACKGROUND: Penicillin G acylase (PGA) has been used extensively in the β‐lactam antibiotics industry. As a biocatalyst, it is better to use immobilized enzymes than free enzymes, therefore, the immobilization of PGA on a composite carrier consisting of an adsorbent resin and biocompatible chitosan were investigated. RESULTS: First, FT‐IR, BET and SEM analysis confirmed the structure of the composite carrier. Then, the immobilization process was optimized. The activity of the immobilized PGA on the chitosan–resin (IP‐CsR) was about 1300 U (g dry carrier)?1 with a protein loading of about 27 mg (g dry carrier)?1. Compared with the immobilized PGA on unmodified resin (IP‐R), the specific activity of IP‐CsR was enhanced about 2‐fold. The operational, thermal and pH stability were investigated. IP‐CsR maintained more than 75% initial activity after 35 cycles, while IP‐R was active for only 10 cycles. The half‐life at 50 °C increased from 75 to 300 min and the most stable pH was changed from 8.0 to 5.5. CONCLUSION: A novel composite carrier containing a biocompatible chitosan was very effective for PGA immobilization. Copyright © 2008 Society of Chemical Industry  相似文献   

16.
Glucose oxidase (EC 1.1.3.4) was immobilized on different polymeric materials using different immobilization techniques (entrapping by γ‐irradiation, and covalent binding using epichlorohydrin). Studies were carried out to increase the thermal stability of glucose oxidase (GOD) for different applications. The activity and stability of the resulting biopolymers have been compared with those of free GOD. The effect of different polyvinyl alcohol/polyacrylamide (PVA/PAAm) compositions of the copolymer carrier on the enzymatic activity of the immobilized GOD was studied. The maximum enzymatic activity was obtained with the composition ratio of PVA/PAAm of 60:40. The behaviour of the free and immobilized enzyme was analysed as a function of pH. A broadening in the pH profile (5.5–8) was observed for immobilized preparations. The activity and stability of the resulting biopolymers produced by immobilization of GOD onto different carriers have been compared, in both aqueous and organic media, with those of the free GOD. The enzyme's tolerance toward both heat and organic solvent was enhanced by immobilization onto polymers. The addition of different concentrations of organic solvents (10–50%, v/v) to the enzyme at higher temperature (60 °C) was found to stabilize the enzyme molecule. The strongest stabilizing effect on the enzymatic activity was achieved at a concentration of 10%. Copyright © 2005 Society of Chemical Industry  相似文献   

17.
Epoxy group‐containing poly(hydroxyethyl methacrylate/glycidyl methacrylate), p(HEMA/GMA), membrane was prepared by UV initiated photopolymerization. The membrane was grafted with chitosan (CH) and some of them were chelated with Fe(III) ions. The CH grafted, p(HEMA/GMA), and Fe(III) ions incorporated p(HEMA/GMA)‐CH‐Fe(III) membranes were used for glucose oxidase (GOD) immobilization via adsorption. The maximum enzyme immobilization capacity of the p(HEMA/GMA)‐CH and p(HEMA/GMA)‐CH‐Fe(III) membranes were 0.89 and 1.36 mg/mL, respectively. The optimal pH value for the immobilized GOD preparations is found to have shifted 0.5 units to more acidic pH 5.0. Optimum temperature for both immobilized preparations was 10°C higher than that of the free enzyme and was significantly broader at higher temperatures. The apparent Km values were found to be 6.9 and 5.8 mM for the adsorbed GOD on p(HEMA/GMA)‐CH and p(HEMA/GMA)‐CH‐Fe(III) membranes, respectively. In addition, all the membranes surfaces were characterized by contact angle measurements. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3084–3093, 2007  相似文献   

18.
α-amylase from Bacillus licheniformis was successfully immobilized on developed support, which was prepared by coating a chitosan-casein film on silica, at 20 °C, pH 6.0 for 5 hr with microbial transglutaminase (MTG) as the cross-linking factor. The optimal support was obtained when 1% chitosan and 1% casein were used in the coating mixture. The optimal condition for immobilization catalyzed by MTG was confined to be at MTG concentration of 15 U/mL, pH 6.0, reacting for 6 hr at 20 °C. The highest specific activity of immobilized α-amylase was achieved as 236 U/g. After immobilization, the obtained enzyme showed broader pH profile and maintained more than 70% of the original activity after 20 reuses.  相似文献   

19.
Microporous poly(2‐hydroxyethyl methacrylate) (pHEMA) membrane was prepared by UV‐initiated photopolymerization. The spacer arm (i.e., hexamethylene diamine) was attached covalently and then invertase was immobilized by the condensation reaction of the amino groups of the spacer arm with carboxyl groups of the enzyme in the presence of carbodiimides. The values of the Michael's constant Km of invertase were significantly larger (ca. 2.5 times) upon immobilization, indicating decreased affinity by the enzyme for its substrate, whereas Vmax was smaller for the immobilized invertase. Immobilization improved the pH stability of the enzyme as well as its temperature stability. Thermal stability was found to increase with immobilization and at 70°C the half times for the activity decay were 12 min for the free enzyme and 41 min for the immobilized enzyme. The immobilized enzyme activity was found to be quite stable in repeated experiments. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1685–1692, 2000  相似文献   

20.
This study investigated the activity of trypsin that had been covalently immobilized onto acrylic acid (AA)– and methacrylic acid (MAA)–grafted polyethylene (PE) plates—PE–g–PAA and PE–g–PMAA—using a water‐soluble carbodiimide as a coupling agent, as a function of the immobilized amount, the grafted amount, the pH value on immobilization, and the pH value and temperature at the activity measurement. The activity of trypsin immobilized on the PE–g–PAA plates at pH 6.0 decreased with an increase in the immobilized amount because of the crowding of trypsin molecules in the vicinity of the surfaces of the grafted PAA layers. The increase in the grafted amount resulted in a decrease in the activity of immobilized trypsin because of a decrease in the diffusivity of BANA molecules caused by the formation of dense grafted PAA layers for the PE–g–PAA plates and led to the increased activity because of the increase in the hydrophilicity of the whole grafted layers for the PE–g–PMAA plates. The activity of trypsin immobilized on the PE–g–PAA and PE–g–PMAA plates at pH 6 increased with an increase in the pH value, probably because of the expansion of trypsin‐carrying grafted PAA and PMAA chains and the increased diffusivity of Nα‐benzoyl‐DL ‐arginine‐nitroanilide hydrochloride molecules in the grafted layers. The optimum temperature of the activity of immobilized trypsin shifted to 50°C from 30°C for native trypsin. Immobilized trypsin was reusable without any denaturation and isolation at temperatures ranging from 20°C to 60°C and pH values ranging from 6 to 10. Trypsin immobilized on a PE–g–PAA plate had 95% of the remaining activity in relation to native trypsin at 30°C after preservation in a pH 7.8 buffer at 4°C over 6 months. These results made clear that alkaline and thermal stability, reusability, and storage stability can be much improved by the covalent coupling of trypsin on PE–g–PAA and PE–g–PMAA plates. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3574–3581, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号