首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microcellular foam is a polymeric foam with bubble sizes of 10 microns or less that is produced by saturating a polymer with gas and then utilizing the thermodynamic instabilities that result when the polymer is heated and the pressure is reduced to nucleate the cells. A model for the nucleation of microcellular foam in amorphous polymers with additives has been developed. The nucleation process depends on the solubility, concentration, and interfacial energy of any additives present. At very low levels, additives in solution act to increase the free volume of the polymer, resulting in homogeneous nucleation within the free volume Well above the solubility limit, heterogeneous nucleation dominates, as it lowers the activation energy for nucleation to levels below that for homogeneous nucleation. In the vicinity of the solubility limit of the additive, these two nucleation mechanisms compete. The polystyrene-zinc stearate system has been chosen for experimental evaluation.  相似文献   

2.
本文通过熔融共混制得了EPDM/LDPE热塑性弹性体,压制标准试样,然后使用超临界二氧化碳作为发泡剂在高压反应釜中进行物理发泡。通过万能拉力机测试了弹性体力学性能,用扫描电镜观察了拉伸断面和泡孔的微观结构。结果表明:DCP硫化体系的热塑性弹性体的综合力学性能要优于硫黄硫化体系,随着硫化剂用量的增多,拉伸强度和撕裂强度有一个最大值,硬度上升;橡塑比在4:6时,力学性能达到最佳,最大拉伸强度为7.5MPa,最大撕裂强度为27.6MPa。扫描电镜观察其拉伸断面形貌,表明EPDM橡胶相与LDPE塑料相呈现“海-岛”两相微观结构;泡孔大小均匀性较好,成功制备了微米级微孔泡沫且泡孔大小分布均匀。  相似文献   

3.
辛颖 《国外塑料》2002,20(3):22-24,32
介绍了微孔泡沫成型工艺的技术特点。对其应用和发展前景作了分析。认为这一技术内含巨大的发展优势和效益。  相似文献   

4.
Experiments were performed to validate the model for the nucleation of microcellular foams in amorphous thermoplastic polymers. The polystyrene-zinc stearate system was chosen as the model system. Other additives such as stearic acid and carbon black were also investigated. Molecular weight and orientation effects were studied. Nitrogen and carbon dioxide were used to produce the microcellular bubbles. Results show that amounts of soluble additives at levels just below their solubility limit and high gas saturation pressures yield the most acceptable foams—ones with a large number of uniform small bubbles. In this region, the bubble number is sensitive to both the gas saturation pressure and the concentration of solutes. Increasing the concentration of soluble additives above the solubility limit has little effect on bubble number and almost eliminates the dependence on saturation pressure. Molecular weight and orientation had no effect on the number of bubbles produced. Similarly, carbon black, which is insoluble in and which bonds well to polystyrene, produced no effect on bubble numbers. The agreement between theoretical predictions and experimental results is reasonably good.  相似文献   

5.
A batchwise process for the production of microcellular plastics was studied in the polystyrene–nitrogen system. The effects of saturation temperature, saturation pressure, and late‐ and quick‐heating on the microcellular structure were investigated by considering the solubility of the gas in the polymer. It was found that the mean cell diameter was reduced and the cell number density increased with increase in the gas solubility. Variation in the saturation temperature showed that the cell number density had a minimum and the mean cell diameter had a maximum at about 350 K, which was related to the minimum solubility of nitrogen in polystyrene. The long heating time at 393 K of a solution saturated under 25 MPa increased the cell diameter, reduced the cell number density, and gave a maximum volume expansion ratio at about 300 s. Further heating caused the cell size and volume expansion ratio to be decreased, which might be caused by diffusion of the gas out of the polymer sample. The effect of the saturation temperature under high saturation pressure on the cell number density was qualitatively well predicted by the nucleation theory. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2383–2395, 2000  相似文献   

6.
A new foam injection‐molding technology was developed to produce microcellular foams without using supercritical fluid (SCF) pump units. In this technology, physical blowing agents (PBA), such as nitrogen (N2) and carbon dioxide (CO2), do not need to be brought to their SCF state. PBAs are delivered directly from their gas cylinders into the molten polymer through an injector valve, which can be controlled by a specially designed screw configuration and operation sequence. The excess PBA is discharged from the molten polymer through a venting vessel. Alternatively, additional PBA is introduced through the venting vessel when the polymer is not saturated with PBA. The amount of gas delivered into the molten polymer is controlled by the gas dosing time of the injector valve, the secondary reducing pressure of the gas cylinder and the outlet (back) pressure of the venting vessel. Microcellular polypropylene foams were prepared using the developed foam injection‐molding technology with 2–6 MPa CO2 or 2–8 MPa N2. High expansion foams with an average cell size of less than 25 μm were prepared. The developed technology dispels arguments for the necessity to pressurize N2 or CO2 to the SCF to prepare microcellular foams. POLYM. ENG. SCI., 57:105–113, 2017. © 2016 Society of Plastics Engineers  相似文献   

7.
In the past 3 decades, there has been great advancement in the preparation of microcellular thermoplastic polymer foams. However, little attention has been paid to thermoplastic elastomers. In this study, microcellular poly(ethylene‐co‐octene) (PEOc) rubber foams with a cell density of 2.9 × 1010 cells/cm3 and a cell size of 1.9 μm were successfully prepared with carbon dioxide as the physical blowing agent with a batch foaming process. The microcellular PEOc foams exhibited a well‐defined, closed‐cell structure, a uniform cell size distribution, and the formation of unfoamed skin at low foaming temperatures. Their difference from thermoplastic foam was from obvious volume recovery in the atmosphere because of the elasticity of the polymer matrix. We investigated the effect of the molecular weight on the cell growth process by changing the foaming conditions, and two important effect factors on the cell growth, that is, the polymer matrix modulus/melt viscoelastic properties and gas diffusion coefficient, were assessed. With increasing molecular weight, the matrix modulus and melt viscosity tended to increase, whereas the gas solubility and diffusion coefficient decreased. The increase in the matrix modulus and melt viscosity tended to decrease the cell size and stabilize the cell structure at high foaming temperatures, whereas the increase in the gas diffusion coefficient facilitated cell growth at the beginning and limited cell growth because most of the gas diffused out of the polymer matrix during the long foaming times or at high foaming temperatures. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
Thermoplastic polyurethane (TPU) is one of the most widely used and versatile thermoplastic materials. TPU foams have been extensively applied in various industries including the furniture, automotive, sportswear, and packaging industries. In this study, two methods of producing highly expanded TPU injection molded foam were investigated: (1) microcellular injection molding (MIM) with N2 as a blowing agent, and (2) a novel gas‐laden pellet/MIM combined process with N2 and CO2 as co‐blowing agents. Two designs of experiments (DOEs) were performed to learn the influences of key processing parameters and to optimize foam quality. By using N2 and CO2 as co‐blowing agents, a bulk density as low as 0.20 g/cm3 was successfully achieved with a hysteresis compression loss of 24.4%. POLYM. ENG. SCI., 55:2643–2652, 2015. © 2015 Society of Plastics Engineers  相似文献   

9.
Rapid freezing of a polymethylpentene (PMP)/cyclohexane solution to ?80°C gives a tough, flexible foam, in marked contrast to the weak, friable foams obtained by phase-separation of PMP from other solvents. X-ray diffraction and differential scanning calorimetry (DSC) data indicate that the isotactic PMP is in an amorphous state. The production of a flexible, robust foam tube from PMP/cyclohexane implies that this material could find applications as replacement parts for arteries and veins or as filter devices. In sheet form, this material seems ideally suited for use as light-weight insulation for clothing because its open, microcellular structure permits moisture to escape as vapors, but retards air flow. This study demonstrates that process parameters, such as solvent composition, play an important role in determining the various microstructures and physical properties that can be obtained from a single polymer.  相似文献   

10.
A series of microcellular high temperature vulcanized (HTV) silicone rubber foams were prepared using CO2 as a physical blowing agent. Rheological properties, gas diffusive behavior, and foaming parameters of silicone rubber were investigated. The results show that saturation pressure has a significant effect on the diffusivity of CO2 in HTV silicone rubber matrix. The gas concentration and diffusivity increase from 2.45 wt % to 3.24 wt %, and from 1.62 × 10?5 cm2/s to 7.83 × 10?5 cm2/s as the saturation pressure increases from 2 MPa to 5 MPa, respectively. The value of the gas diffusivity in HTV silicone rubber is almost 1000 times higher than that of the gas diffusivity in polyetherimide (PEI) matrix. Additionally, microcellular HTV silicone rubber foams with the smallest cell diameter of 9.8 μm and cell density exceeding 108 cells/cm3 are achieved. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44807.  相似文献   

11.
Starch microcellular foams (SMCFs) are prepared by pore preserving drying or formation processes and contain pores in the micron size range. SMCFs have high specific surface area and are useful for applications such as opacifying pigments or as adsorbent materials. The objective of this research was to determine how the processing conditions and use of a crosslinking agent would affect the foam structure and properties. SMCFs (crosslinked and uncrosslinked) were prepared from molded aquagels and carbon dioxide extrusion processes separately and then solvent exchanged. Extruded samples showed macroscopic pores whereas samples from aquagels showed a much finer micropore structure. Aquagel‐based SMCF samples had lower density and higher brightness than did extruded samples. The starch foams with micropore structure had low density and high brightness. The solvent exchange process was the most important variable in generating a microcellular structure. Micropores and not macropores contributed to increased brightness of these materials. The brightness and density of the foams were found to be linearly related. Crosslinking with epichlorohydrin imparted significant water resistance to the extruded samples as evidenced in lower water swelling and higher contact angles. Equilibrium moisture content was correlated with the microporous structure. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
Microcellular polymeric foam structures have been generated using a pressure‐induced phase separation in concentrated mixtures of supercritical CO2 and styrene‐co‐acrylonitrile (SAN). The process typically generates a microcellular core structure encased by a non‐porous skin. Pore growth occurs through two mechanisms: diffusion of CO2 from polymer‐rich regions into the pores and also through CO2 gas expansion. The effects of saturation pressure, temperature and swelling time on the cell size, cell density and bulk density of the porous materials have been studied. Higher CO2 pressures (hence, higher fluid density) provided more CO2 molecules for foaming, generated lower interfacial tension and viscosity in the polymer matrix, and thus produced lower cell size but higher cell densities. This trend was similar to what was observed in swelling time series. While the average cell size increased with increasing temperature, the cell density decreased. The trend of bulk density was similar to that of cell size. © 2000 Society of Chemical Industry  相似文献   

13.
Ultrasonically induced bubble formation for the production of thermoplastic foam was investigated experimentally and theoretically as a basic study. A general purpose polystyrene and blends of low density polyethylene and polyethylene wax were saturated with nitrogen gas under various pressures and the ultrasonic excitation was applied to the polymer system upon release of gas pressure. The ultrasonic nucleation of bubbles in the polymer matrix was modeled by utilizing the classical nucleation theory. The negative pressure generated by the ultrasonic excitation was considered as the environmental pressure at the moment of nucleation. The experimental results showed that the heterogeneous nucleation must be used for ultrasonic foaming of the viscous fluid and the homogeneous nucleation for the low viscosity fluid. The theoretical analysis also indicated that the ultrasonic nucleation can be applied to the production of thermoplastic foam if the ultrasonic excitation generates large enough negative pressure.  相似文献   

14.
The process of thermoforming of foam sheet is analyzed using both finite element modeling and experiments. A simple constitutive model for finite tensile deformations of closed cellular material around its glass transition temperature is proposed, starting from well-known results from Gibson and Ashby (1988). The model is implemented in a finite element code and applied in isothermal vacuum forming simulations. The distributions of thickness and in plane strains are in adequate accordance to the experimental results.  相似文献   

15.
Microcellular polymer foams exhibit greatly improved mechanical properties as compared to standard foams due to the formers' small bubble size. Microcellular foams have bubbles with diameters on the order of 10 microns, volume reductions of 30 to 40 percent, and six or seven times the impact strength of solid parts. They are produced through the use of thermodynamic instabilities without the use of foaming agents. This method leads to a very uniform cell size throughout a part's cross section. A theoretical model for the nucleation of microcellular foams in thermoplastic polymers has been developed and experimentally confirmed. This model explains the effect of various additives and processing conditions on the number of bubbles nucleated. At levels of secondary constituents below their solubility limits, an increase in the concentration of the additive or the concentration of gas in solution with the polymer increases the number of bubbles nucleated. Nucleation in this region is homogeneous. Above the solubility limit of additives, nucleation is heterogeneous and takes place at the interface between second phase inclusions and the polymer. The number of bubbles nucleated is dependent on the concentration of heterogeneous nucleation sites and their relative effect on the activation energy barrier to nucleation. In the vicinity of the solubility limit, the two mechanisms compete.  相似文献   

16.
Polyethylene‐octene elastomer (POE)/organoclay nanocomposite was prepared by melt mixing of the POE with an organoclay (Cloisite 20A) in an internal mixer, using poly[ethylene‐co‐(methyl acrylate)‐co‐(glycidyl methacrylate)] copolymer (E‐MG‐GMA) as a compatibilizer. X‐ray diffraction and transmission electron microscopy analysis revealed that an intercalated nanocomposite was formed and the silicate layers of the clay were uniformly dispersed at a nanometre scale in the POE matrix. The nanocomposite exhibited greatly enhanced tensile and dynamic mechanical properties compared with the POE/clay composite without the compatibilizer. The POE/E‐MA‐GMA/clay nanocomposite was used to produce foams by a batch process in an autoclave, with supercritical carbon dioxide as a foaming agent. The nanocomposite produced a microcellular foam with average cell size as small as 3.4 µm and cell density as high as 2 × 1011 cells cm?3. Copyright © 2005 Society of Chemical Industry  相似文献   

17.
Microcellular polymeric materials can be obtained by the polymerization of a high‐internal‐phase emulsion. These materials are good candidates as targets toward inertial confinement fusion. This application requires severe specifications, including a very low density and a small cell size. In this study, we examined the influence of parameters such as emulsification conditions, surfactant nature, and the presence of a porogen on the obtainment of those requirements. It was possible to obtain microcellular polymeric foams with apparent densities as low as 0.0126 g/cm3. However, it was difficult to obtain very low material density and still maintain a small average pore size. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2053–2063, 2005  相似文献   

18.
Polyethylene foam experiments were conducted on a twin screw foam extruder to study the process effects upon foam nucleation. The results indicate that, other than quantity of nucleators, throughput rate and die opening are important process parameters, underscoring the importance of shear in the die on nucleation. It is also found that shear effects increase as nucleator level increases. A modified cavity model shows at least qualitative agreement with experimental results. Dimensionless Capillary number, ratio of shear force to surface tension force, provides evidence that shear force rather than shear rate alone is the principal parameter affecting foam nucleation.  相似文献   

19.
The continuous production of polystyrene microcellular foams with supercritical CO2 was achieved on a two‐stage single‐screw extruder. Simulations related to the foaming process were accomplished by modeling the phase equilibria with the Sanchez‐Lacombe equation of state and combining the equations of motion, the energy balance, and the Carreau viscosity model to characterize the flow field and pressure distribution in the die. The position of nucleation in the die was determined from the simulation results via a computational fluid dynamics code (FLUENT). Experimental parameters were selected according to the Tg and phase equilibria. The effects of CO2 concentration and die pressure are explored. Below the solubility limit, higher CO2 concentrations lead to smaller cell size and greater cell density. With an increase of die pressure, the cell size decreases and the cell density increases.  相似文献   

20.
This paper discusses theory and experiments on nonisothermal foam growth during foam sheet formation in an extrusion process. The extruded foam sheet expands and cools simultaneously when exposed to ambient temperature. A viscoelastic cell model in the literature was modified to include heat transfer and gas loss effects during foam sheet formation. Experiments were conducted using a twin-screw extruder to study the effect of ambient temperature and initial sheet thickness on foam characteristics. The foam was made using low-density polyethylene with CFC-12 as the blowing agent. The experimental results are compared with theoretical predictions to check the validity of the model. The results reveal that heat transfer effects become important when sheet thickness decreases to the millimeter range. Agreement between theory and experiment is good when an appropriate boundary condition, to account for the gas loss, is included in the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号