首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
质子交换膜(PEM)作为全钒液流电池(VRFB)的核心组件之一,应当解决成本高昂、合成过程复杂等问题,并具备高质子传导率、低钒离子渗透率、高机械强度和优异化学稳定性等关键性能。本文基于四甲基双酚芴单体通过缩聚反应合成了一系列聚芴醚酮化合物PFEKs,再利用溴代反应将苯甲基功能化为溴甲基,接着通过4-羟基苯磺酸钠的SN2亲核取代制得了一系列不同离子交换容量的磺化聚芴醚酮聚合物(SPFEKs)。通过溶液浇铸法成膜并酸化,得到一系列新型低成本PEMs。该合成路线的原料来源广泛,价格低廉,不涉及危险的磺化反应,易于工业放大。所得膜都具有良好的机械性能和氧化稳定性,其中SPFEK-40膜具有较高的质子传导率及离子选择性、较低的钒离子渗透率及面电阻,综合性能优异。以SPFEK-40膜组装的VRFB在电流密度为80 mA/cm2时的能量效率(EE)为88.2%,高于以Nafion 212膜组装的VRFB的84.8%。此外,以SPFEK-40膜组装的VRFB在30次循环后放电容量仅衰减至84.3%,远高于以Nafion 212膜组装的VRFB的66.1%。  相似文献   

2.
In this study, imidazolium functionalized poly(vinyl alcohol) (PVA) was synthesized by acetalization and direct quaternization reaction. Afterwards, composite anion exchange membranes based on imidazolium‐ and quaternary ammonium‐ functionalized PVA were used for direct methanol alkaline fuel cell applications. 1H NMR and Fourier transform infrared spectroscopy data indicated that imidazole functionalized PVA was successfully synthesized. Inductively coupled plasma mass spectrometry data demonstrated that the imidazolium structure was efficiently obtained by direct quaternization of the imidazole group. Composite anion exchange membranes were fabricated by application of the functionalized PVA solution on the surface of porous polycarbonate (PC) membranes. Fuel cell related properties of all prepared membranes were investigated systematically. The imidazolium functionalized composite membrane (PVA‐Im/PC) exhibited higher ionic conductivity (7.8 mS cm?1 at 30 °C) despite a lower water uptake and ion exchange capacity value compared to that of quaternary ammonium. In addition, PVA‐Im/PC showed the lowest methanol permeation rate and the highest membrane selectivity as well as high alkaline and oxidative stability. Dynamic mechanical analysis results reveal that both composite membranes were mechanically resistant up to 107 Pa at 140 °C. The superior performance of imidazolium functionalized PVA composite membrane compared to quaternary ammonium functionalized membrane makes it a promising candidate for direct methanol alkaline fuel cell applications. © 2020 Society of Chemical Industry  相似文献   

3.
A novel series of hydrocarbon‐based copolymers containing flexible alkylsulfonated groups and hydroxylated poly(ether ether ketone) backbones was designed and prepared as proton conducting membranes. Among the membranes, the membrane SPO3–(PMS–PSBOS)2 with the ion exchange capacity 1.70 showed good proton conductivity at 0.137 S/cm at 80 °C, which was two times as much as that of the control membrane SPO. Further, incorporating the sulfonated graphene oxide (s‐GO) into SPO3–(PMS‐PSBOS)2 leads to the composite membrane SPO3–(PMS–PSBOS)2–SGO, which exhibited higher proton conductivity compared to Nation 117 and the native membrane SPO3–(PMS–PSBOS)2. In addition, the composite membrane SPO3–(PMS–PSBOS)2–SGO showed well‐defined phase separated structures and high selectivity (1.40 × 105 Ss/cm3), which were about three times as that of Nafion 117 (0.52 × 105 Ss/cm3). These results suggested that these membranes are promising materials for direct methanol fuel cell (DMFC) applications. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45205.  相似文献   

4.
The crosslinking reaction of poly(vinyl alcohol) (PVA) by esterification using poly(acrylic acid) (PAA) as a crosslinking reagent was investigated to obtain highly insoluble PVA materials. Blend films of PVA and PAA (PVA/PAA = 8/2) were prepared to examine the effect of degree of neutralization (DN) in PAA and heat‐treatment conditions on the degree of crosslinking reaction. The degree of crosslinking reaction varied significantly when the DN of PAA changed. The optimum DN for the crosslinking reaction was in the range of 5 to 10 mol %. In the case of unneutralized PAA, the degree of crosslinking reaction was at most 15 mol % by heat treatment for 20 min at 200°C. Applying partially neutralized PAA (DN = 10 mol %) raised the degree to about 40 mol % under the same heat‐treatment conditions. FTIR analysis revealed that the hydroxyl group of PVA in the film blended with unneutralized PAA was degraded to a greater degree than that with partially neutralized PAA as a result of heat treatment. It was found that heat treatment at a low pH condition enhances the degradation of the hydroxyl group of PVA, resulting in a decrease of the number of crosslinking sites by esterification. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2420–2427, 2003  相似文献   

5.
Ion exchange between H+ and Eu3+ and/or Tb3+ was studied in the material modified by in situ sorption and thermal polymerization of acrylic acid in low‐density polyethylene (LDPE–PAA) and in the composite system LDPE–Fe2O3–PAA. Fluorescence spectroscopy showed evidence of Eu3+ and/or Tb3+ ion exchanges in these materials. The matrix LDPE–PAA after Eu(III) ion exchange presented luminescence (excitation 265 nm). This was explained by an energy‐transfer process from the matrix LDPE–PAA to Eu3+ ions. The LDPE–PAA matrix after simultaneous Eu3+/Tb3+ ion exchange exhibited Eu3+ and Tb3+ ion luminescence (excitation 265 nm), confirming an energy‐transfer process from LDPE–PAA to Eu3+ ions in LDPE–PAA–Eu3+–Tb3+ matrix. Fe2O3 in LDPE–Fe2O3–PAA quenched the matrix for excitation at 265 nm and no emission at the region 400 nm was observed. The luminescence of Tb3+ ions in the matrix LDPE–Fe2O3–PAA–Tb3+ (excitation 265 nm) was partially quenched by Fe2O3. However, a weak emission of Eu3+ ions was observed (excitation 265 nm) in the matrix LDPE–Fe2O3–PAA after simultaneous Eu3+ and Tb3+ ion exchanges, suggesting an energy transfer from Tb3+ to Eu3+ ions. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 919–931, 2000  相似文献   

6.
Ion‐exchange membranes were prepared with semi‐interpenetrating networks (s‐IPNs) by mixing a film‐forming polymer, poly(vinyl alcohol) (PVA), for the crosslinked matrix and a polyelectrolyte for the specific ion‐exchange property. Poly(sodium styrenesulfonate) (PSSNa), poly(styrenesulfonic acid) (PSSH), and poly(acrylic acid) (PAA) were used as anionic polyelectrolytes. Polyethyleneimine (PEI), poly(1,1‐dimethyl‐3,5‐dimethylenepiperidinium chloride) (PDDPCl), and poly(diallyldimethylammonium chloride) (PDDMACl) were used as cationic polyelectrolytes. Membranes with PVA 60% and polyelectrolyte 40% showed the best compromise among mechanical, homogeneous, and ion‐exchange properties. Gaseous dibromoethane was used as a crosslinking agent to form the PVA network and for efficient entrapment of the polyelectrolyte in the membrane. The crosslinking time (tc) was optimized for each type of membrane and its influence was studied by thermogravimetric analysis of the sample and scanning electron microscopy observations. The best results (large ion‐exchange capacity and small swelling ratio) were obtained for PVA/PAA and PVA/PSSNa/PSSH membranes. Among anion‐exchange membranes, PVA/PEI gave the best permselectivity (low co‐ion leakage) and the highest ion‐exchange capacity. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1572–1580, 2002; DOI 10.1002/app.10420  相似文献   

7.
The development of carbon dioxide (CO2) separation technology is crucial for mitigating global climate change and promoting sustainable development. In this study, we successfully synthesized an array of cross-linked poly(vinyl alcohol) (PVA) membranes, xALD-PEG-ALD-c-PVA, with enhanced CO2/N2 separation performance by employing dialdehyde polyethylene glycol (ALD-PEG-ALD) as a cross-linker. The formation of the cross-linked network structure not only inhibits the crystallization of PVA but also disrupts hydrogen bonding and thus increases fractional free volume of PVA chains. Under the synergistic effect of these multiple factors, the cross-linked PVA membranes exhibit a significantly improved CO2 permeability. Moreover, they maintain high CO2/N2 selectivity, attributing to the CO2-philic characteristic of ethylene oxide groups in the cross-linked structure. At the ALD-PEG-ALD content of 1.6 mmol g−1, the xALD-PEG-ALD-c-PVA membrane demonstrates a CO2 permeability of 41.4 barrer and a CO2/N2 selectivity of 57.4 at 2 bar and 25°C. Furthermore, compared with the pristine PVA membrane, xALD-PEG-ALD-c-PVA membranes manifest superior mechanical properties and outstanding separation performance for a CO2/N2 (15/85, vol%) gas mixture. The excellent combination of permeability and selectivity makes xALD-PEG-ALD-c-PVA membranes highly promising for various CO2 separation applications.  相似文献   

8.
To enhance the oxygen‐barrier and water‐resistance properties of poly(vinyl alcohol) (PVA) and expand its food packaging applicability, five crosslinked poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA) blend films were prepared via esterification reactions between hydroxyl groups in PVA and carboxylic acid groups in PAA. The physical characteristics of the blends, including the thermal, barrier, mechanical and optical properties, were investigated as a function of PAA ratio. With increasing PAA content, the crosslinking density was significantly increased, resulting in changes in the chemical structure, morphology and crystallinity of the films. The oxygen transmission rate of pure PVA decreased from 5.91 to 1.59 cc m?1 day?1 with increasing PAA ratio. The water resistance, too, increased remarkably. All the blend films showed good optical transparency. The physical properties of the blend films were strongly correlated with the chemical structure and morphology changes, which varied with the PAA content. © 2016 Society of Chemical Industry  相似文献   

9.
Novel membranes based on sulfonated poly (phenylene oxide) (SPPO) was developed. SPPO membranes in the hydrogen form were converted to metal ion forms. The effect of exchange with metal ions including monovalent (Li+, Na+, K+), divalent (Mg2+, Ba2+, Ca2+) and trivalent (Al3+) ions was investigated in terms of permeation rate and permeation rate ratios for CO2 and CH4 gases. Both dense homogeneous membranes and thin‐film composite (TFC) membranes were studied for their gas separation characteristics. The effect of membrane preparation conditions and operating parameters on the membrane performance were also investigated. The selectivity of the TFC membrane increased as the cationic charge density increased as a result of electrostatic cross‐linking. TFC membrane of very high selectivity was achieved by coating a thin layer of SPPO‐Mg on a PES substrate. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 735–742, 2000  相似文献   

10.
Blends of poly(vinyl alcohol) (PVA), poly(acrylic acid), (PAA), and poly(vinyl pyrrolidone) (PVP), with poly(N‐isopropylacrylamide) (PNIPAM), were prepared by casting from aqueous solutions. Mechanical properties of PNIPAM/PVA blends were analyzed by stress–strain tests. Differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were employed to analyze the miscibility between the polymeric pairs. The results revealed that PNIPAM is not miscible with PVA and PVP in the whole range of composition. On the other hand, PNIPAM interacts strongly with PAA forming interpolymer complex due to the formation of cooperative hydrogen bonds. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 743–748, 2004  相似文献   

11.
Novel poly(benzimidazole/fluoro/ether/siloxane/amide) (PBFESA) was developed for the formation of hybrid proton exchange membrane. Afterward, phosphoric acid doped PBFESA/PS-S/SiNPs was prepared with PBFESA, sulfonated polystyrene (PS-S), and 0.1–2 wt% silica nanoparticles (SiNPs). Tensile strength of acid doped PBFESA/PS-S/SiNPs nanocomposites increased from 63.9 to 68.1 MPa with increasing SiNPs loading. They had higher ion exchange capacity (IEC) of 2.3–3.3 mmol/g and proton conductivity of 1.9–2.7 S/cm at 80°C (higher than perfluorinated Nafion 117 membrane 1.1 × 10?1 S/cm). A H2/O2 fuel cell using PBFESA/PS-S/SiNPs 2 (IEC 3.3 mmol/g) showed better performance than Nafion 117 at 40°C (30% RH).  相似文献   

12.
A novel sulfonated poly(ether sulfone) (SPES)/phosphotungstic acid (PWA)/silica composite membranes for direct methanol fuel cells (DMFCs) application were prepared. The structure and performance of the obtained membranes were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), water uptake, proton conductivity, and methanol permeability. Compared to a pure SPES membrane, PWA and SiO2 doped membranes had a higher thermal stability and glass transition temperature (Tg) as revealed by TGA‐FTIR and DSC. The morphology of the composite membranes indicated that SiO2 and PWA were uniformly distributed throughout the SPES matrix. Proper PWA and silica loadings in the composite membranes showed high proton conductivity and sufficient methanol permeability. The selectivity (the ratio of proton conductivity to methanol permeability) of the SPES‐P‐S 15% composite membrane was almost five times than that of Nafion 112 membrane. This excellent selectivity of SPES/PWA/silica composite membranes indicate a potential feasibility as a promising electrolyte for DMFC. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
Monomer acrylic acid (AA) and initiator azo‐bis(isobutyronitrile)were carried into Antheraea pernyi silk fibroin (SF) fibers using supercritical CO2 as a solvent and carrier, followed by free radical polymerization at a suitable temperature, resulting in PAA/SF blends. The binary system of CO2/AA and the ternary system of CO2/AA/AIBN systems were studied. Different impregnation conditions, such as time, pressure, and concentration of AA in the fluid phase on mass uptake, were studied. Fourier transform infrared spectroscopy and X‐ray diffraction results confirmed that PAA was indeed present in the silk and that there were intermolecular hydrogen bonds between PAA and SF. According to thermogravimetry and DTG, blending with PAA could enhance the thermal stability of SF slightly. The water retention values indicated that the hydrophilic nature of the fibers was improved. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 864–868, 2005  相似文献   

14.
A new chelating ion‐exchange resin containing the hydroxamic acid functional group was synthesized from poly(methyl acrylate) (PMA)‐grafted sago starch. The PMA grafted copolymer was obtained by a free‐radical initiating process in which ceric ammonium nitrate was used as an initiator. Conversion of the ester groups of the PMA‐grafted copolymer into hydroxamic acid was carried out by treatment of an ester with hydroxylamine in an alkaline solution. The characterization of the poly(hydroxamic acid) chelating resin was performed by FTIR spectroscopy, TG, and DSC analyses. The hydroxamic acid functional group was identified by infrared spectroscopy. The chelating behavior of the prepared resin toward some metal ions was investigated using a batch technique. The binding capacities of copper, iron, chromium, and nickel were excellent and the copper capacity was maximum (3.46 mmol g−1) at pH 6. The rate of exchange of the copper ion was very fast that is, t1/2 < 5 min. It was also observed that the metal ion‐sorption capacities of the resin were pH‐dependent and its selectivity toward the metal ions used is in the following order: Cu2+ > Fe3+ > Cr3+ > Ni2+ > Co2+ > Zn2+ > Cd2+ > As3+ > Pb2+. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1256–1264, 2001  相似文献   

15.
Poly(vinyl alcohol) (PVA) can be dissolved in a nonaqueous medium in the presence of catalytic concentration of ethyl nitrate dimethyl sulfoxide, C2H5ONO2 · DMSO (EN · DMSO). From the PVA solution, poly(vinyl butyral) (PVBu) was prepared by acid‐catalyzed homogeneous acetalization of PVA with butyraldehyde. The formation of PVBu was confirmed by IR and 1H‐NMR spectra. The degree of acetalization of PVBu was found to be 95 mol %, which was verified by 1H‐NMR data and acetylation method. The molecular mass of the polymer was determined by GPC method. The glass transition temperature, Tg, was measured from differential scanning calorimetric (DSC) thermograms. Thermal stabilities were checked by thermogravimetric analysis (TGA) and differential thermogravimetry (DTG). The acetal decomposed in three stages. The corresponding initial decomposition temperatures were found to be 285, 390, and above 500°C. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1182–1186, 2001  相似文献   

16.
A novel amphoteric ion exchange membrane for vanadium redox flow battery (VRFB) was explored by blending sulfonated poly(ether ether ketone) (SPEEK) and ammonium polyphosphate (APP). The high-stability flame retardant of cross-linked APP with a large number of NH4+ groups was first introduced into SPEEK membrane. It was observed that the addition of APP with special structure could achieve a good balance between proton conductivity and vanadium ions permeability. The abundant NH4+ in APP could block the penetration of vanadium ions by Donnan/Manning exclusion effect and ionic crossing networks due to the ionic bonds between cation and anion groups, and specially a small amount of APP within 5% could remarkably improve the proton conductivity of pristine SPEEK membrane might be ascribed to the unique fast proton transport channels formed by hydrogen bond networks and particular micro-phase separation as a result of interaction between SPEEK and APP. When 5% APP was blended, the SPEEK/APP-5% (S/APP-5%) amphoteric membrane showed a higher selectivity of 20.87 × 104 S min/cm3 (with a good proton conductivity of 0.075 S/cm and a lower VO2+ permeability of 3.45 × 10−7 cm2/ min) and presented better thermal and chemical stability compared to Nafion115 and SPEEK membranes. The VRFB single cell assembled with S/APP-5% amphoteric membrane exhibited more excellent performance than that of Nafion115 and pristine SPEEK membranes, which revealed a higher coulombic efficiency of 96.3%–98.3%, comparable voltage efficiency of 88.4%–78.7% and higher energy efficiency of 85.1%–77.4% from 40 to 80 mA/cm2, respectively, and showed relatively good stability of the efficiency up to 50 cycles at 60 mA/cm2. The results demonstrated that the designed S/APP amphiprotic membrane of outstanding selectivity, high battery efficiency, and good durability is a prospected VRFB separator.  相似文献   

17.
The morphology and size of poly(acrylic acid) (PAA) particles produced by precipitation polymerization in supercritical CO2 (scCO2) depends on the glass transition temperature (Tg) of the polymer at reaction conditions. In this study, the use of the Sanchez–Lacombe equation of state (SL‐EOS), in conjunction with Chow's equation, to predict the effect of CO2 pressure on the Tg of PAA was evaluated. Characteristic parameters for PAA were determined by fitting density data. Characteristic parameters for CO2 were determined by fitting density data in the supercritical region. When the SL‐EOS was used in a purely predictive mode, with a binary interaction parameter (ψ) of 1, the solubility of CO2 in PAA was underestimated and Tg was overestimated, although the trend of Tg with CO2 pressure was captured. When was determined by fitting the SL‐EOS to the measured sorption of scCO2 in PAA, the calculated Tg's agreed very well with measured values. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
The effect of Na‐alginate content on the gas permeation properties of water‐swollen membranes prepared by varying Na‐alginate and poly(vinyl alcohol) (PVA) content in membranes was investigated. The influences of water content and crystallinity of the membranes on the gas permeation performance of the water‐swollen membranes were studied. The gas permeation rate and selectivity of Na‐alginate/PVA water‐swollen membranes were compared with those of the dry membranes. The permeation rates of nitrogen and carbon dioxide through water‐swollen membranes were in the range of 0.4–7.6 × 10?7 to 3.7–8.5 × 10?6 cm3 (STP)/cm2 s?1 cmHg?1, which were 10,000 times higher than those of dry‐state membranes. The permeation rates of mixture gases through water‐swollen Na‐alginate/PVA membranes were found to increase exponentially with the increase of Na‐alginate content, whereas carbon dioxide concentration in permeates was decreased linearly. It was found that the gas permeance of the water‐swollen membranes increased with increasing the Na‐alginate content in the membrane. Gas permeation rates of the water‐swollen Na‐alginate/PVA membranes increased with increasing the water content in the membrane and decreasing the crystallinity of the membrane. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3225–3232, 2004  相似文献   

19.
Blend films of poly(L ‐lactide) (PLLA) and poly(vinyl alcohol) (PVA) were obtained by evaporation of hexafluoroisopropanol solutions of both components. The component interaction, crystallization behavior, and miscibility of these blends were studied by solid‐state NMR and other conventional methods, such as Fourier transform infrared (FTIR) spectra, differential scanning calorimetry (DSC), and wide‐angle X‐ray diffraction (WAXD). The existence of two series of isolated and constant glass‐transition temperatures (Tg's) independent of the blend composition indicates that PLLA and PVA are immiscible in the amorphous region. However, the DSC data still demonstrates that some degree of compatibility related to blend composition exists in both PLLA/atactic‐PVA (a‐PVA) and PLLA/syndiotactic‐PVA (s‐PVA) blend systems. Furthermore, the formation of interpolymer hydrogen bonding in the amorphous region, which is regarded as the driving force leading to some degree of component compatibility in these immiscible systems, is confirmed by FTIR and further analyzed by 13C solid‐state NMR analyses, especially for the blends with low PLLA contents. Although the crystallization kinetics of one component (especially PVA) were affected by another component, WAXD measurement shows that these blends still possess two isolated crystalline PLLA and PVA phases other than the so‐called cocrystalline phase. 13C solid‐state NMR analysis excludes the interpolymer hydrogen bonding in the crystalline region. The mechanical properties (tensile strength and elongation at break) of blend films are consistent with the immiscible but somewhat compatible nature of these blends. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 762–772, 2001  相似文献   

20.
Interpenetrating polymer network (IPN) hydrogels based on poly(vinyl alcohol) (PVA) and 1‐vinyl‐2‐pyrrolidone (VP) were prepared by radical polymerization using 2,2‐dimethyl‐2‐phenylacetophenone (DMPAP) and methylene bisacrylicamide (MBAAm) as initiator and crosslinker, respectively. The thermal characterization of the IPNs was investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dielectric analysis (DEA). Depressions of the melting temperatures of PVA segments in IPNs were observed with increasing VP content via the DSC. The DEA was employed to ascertain the glass transition temperature (Tg) of IPNs. From the result of DEA, IPNs exhibited two Tgs indicating the presence of phase separation in the IPN. The thermal decomposition of IPNs was investigated using TGA and appeared at near 270°C. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1844–1847, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号