首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The isothermal and non‐isothermal melt‐crystallization kinetics of nylon 1212 were investigated by differential scanning calorimetry. Primary and secondary crystallization behaviors were analysed based on different approaches. The results obtained suggested that primary crystallization under isothermal conditions involves three‐dimensional spherulite growth initiated by athermal nucleation, while under non‐isothermal conditions, the mechanism of primary crystallization is more complex. Secondary crystallization displays a lower‐dimensional crystal growth, both in the isothermal and non‐isothermal processes. The crystallite morphology of nylon 1212, isothermally crystallized at various temperatures, was observed by polarized optical microscopy. The activation energies of crystallization under isothermal and non‐isothermal conditions were also calculated based on different approaches. Copyright © 2004 Society of Chemical Industry  相似文献   

2.
Xikui Zhang  Guisheng Yang 《Polymer》2006,47(6):2116-2126
Nylon 11/nylon 66 alloys were prepared by in situ polymerization. Analysis of the isothermal crystallization behaviors of nylon 11/nylon 66 alloys was carried out using differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The crystallization kinetics of the primary stage under isothermal conditions could be described by the Avrami equation. The crystal morphology observed by means of polarized optical microscope (POM). In the DSC scan after isothermal crystallization process, the multiple melting behaviors were found and each melting endotherm has a different origin. The real-time XRD measurements confirmed that no crystalline transition existed during the isothermal crystallization process. The multiple endotherms were experimentally evidenced due to melting of the recrystallizated materials or the lamellae produced under different crystallization processes. The equilibrium melting point of samples for isothermal crystallization was also evaluated.  相似文献   

3.
The crystallization kinetics and melting behavior of nylon 10,10 in neat nylon 10,10 and in nylon 10,10–montmorillonite (MMT) nanocomposites were systematically investigated by differential scanning calorimetry. The crystallization kinetics results show that the addition of MMT facilitated the crystallization of nylon 10,10 as a heterophase nucleating agent; however, when the content of MMT was high, the physical hindrance of MMT layers to the motion of nylon 10,10 chains retarded the crystallization of nylon 10,10, which was also confirmed by polarized optical microscopy. However, both nylon 10,10 and nylon 10,10–MMT nanocomposites exhibited multiple melting behavior under isothermal and nonisothermal crystallization conditions. The temperature of the lower melting peak (peak I) was independent of MMT content and almost remained constant; however, the temperature of the highest melting peak (peak II) decreased with increasing MMT content due to the physical hindrance of MMT layers to the motion of nylon 10,10 chains. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2181–2188, 2003  相似文献   

4.
HF Shi  Y Zhao  X Dong  CC He  DJ Wang  DF Xu 《Polymer International》2004,53(11):1672-1676
In this paper, the isothermal crystallization of nylon 6 in the presence of Kevlar 129 fiber was investigated by polarized optical microscopy (POM). The formation of a transcrystalline domain was found to be mainly controlled by crystallization conditions, such as the temperature of the isothermal crystallization, residual time at melting temperature and the cooling rate of the melt. The nucleation rate of nylon 6 on the fibers was mainly affected by the crystallization temperature. The interfacial transcrystallinity of nylon 6 occurred on the surface of Kevlar 129 fiber in the temperature range 130–190 °C. The reason for the formation of interfacial transcrystalline morphology is discussed from the molecular level, based on the understanding of the packing mode of nylon 6 chains around fibers and the interaction between matrix and fibers. It was found that the lattice matching and hydrogen‐bonding between nylon 6 and poly(p‐phenylene terephthalamide) (PPTA) crystals play an important role in the epitaxial crystallization. Copyright © 2004 Society of Chemical Industry  相似文献   

5.
The melting behaviors and crystal structures of a long alkyl chain polyamide and nylon 18 18, were investigated under annealing and isothermal crystallization conditions. Nylon 18 18 showed multiple melting peaks in differential scanning calorimetry (DSC) thermograms depending on thermal history of the samples. The origin of the multiple melting peaks may be a result of a melting and recrystallization mechanism during DSC scans. Wide‐angle X‐ray diffraction patterns showed two new diffraction peaks, which appeared at 0.44 and 0.37 nm, and are characteristic peaks of α‐form (triclinic structure) of even–even nylons with increasing annealing temperature. The intensities of these peaks increased, and they split further apart, with elevated annealing temperatures. The solid‐state 15N CP/MAS NMR spectra of the nylon 18 18 samples that had been quenched and annealed also confirmed the α‐crystalline form. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
Nylon 11/ethylene‐vinyl alcohol/dicumyl peroxide (DCP) blends were prepared using a single‐screw extruder. The melting behavior and isothermal crystallization kinetics were investigated using differential scanning calorimetry. The reorganization of nylon 11 crystals is strongly hindered owing to cocrosslinking phenomena. The analysis of the crystallization kinetics demonstrated that the Avrami equation well described the isothermal crystallization process of the primary stage. The spherulites growth kinetics parameters and fold surface free energy were also evaluated. The experimental results confirmed that the presence of DCP increased the crystallization rate. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

7.
S Gogolewski  A.J Pennings 《Polymer》1975,16(9):673-679
A study has been made on the crystallization of nylon-6 from the melt under elevated pressures. Crystallization induced by pressures of up to 8 kbar at temperatures between 270° and 310°C did not lead to a significant increase of the melting temperature for nylon-6 containing 8% caprolactam. However, the melting peak temperature, as determined by differential scanning calorimetry was found to increase from 220° to 250°C for nylon-6 without caprolactam and crystallized under pressures exceeding 5 kbar for 50 h. The heat of melting of the nylon specimen crystallized under these conditions increased from 14 to 37 cal/g. Thermal decomposition of the polymer could be diminished by heating under pressure and extruding the nylon under vacuum prior to the high pressure crystallization experiments. The specific volume diminished gradually during isothermal crystallization and the melting temperature was found to increase with crystallization time. These observations point to a one stage process for the development of extended-chain crystals of nylon-6. The highest melting peak temperature of 256°C was recorded on nylon-6 which was crystallized at 315°C and 8 kbar for a period of 320 h.  相似文献   

8.
9.
Isothermal and non‐isothermal crystallization kinetics of microbial poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) [P(3HB‐3HHx)] was investigated by differential scanning calorimetry (DSC) and 13C solid‐state nuclear magnetic resonance (NMR). Avrami analysis was performed to obtain the kinetic parameters of primary crystallization. The results showed that the Avrami equation was suitable for describing the isothermal and non‐isothermal crystallization processes of P(3HB‐3HHx). The equilibrium melting temperature of P(3HB‐3HHx) and its nucleation constant of crystal growth kinetics, which were obtained by using the Hoffman–Weeks equation and the Lauritzen–Hoffmann model, were, respectively, 121.8 °C and 2.87 × 105 K2 when using the empirical ‘universal’ values of U* = 1500 cal mol?1. During the heating process, the melting behaviour of P(3HB‐3HHx) for both isothermal and non‐isothermal crystallization showed multiple melting peaks, which was the result of melting recrystallization. The lower melting peak resulted from the melting of crystals formed during the corresponding crystallization process, while the higher melting peak resulted from the recrystallization that took place during the heating process. Copyright © 2005 Society of Chemical Industry  相似文献   

10.
Isothermal and nonisothermal crystallization kinetics of even‐odd nylon 10 11 were investigated by differential scanning calorimetry (DSC). Equilibrium melting point was determined to be 195.20°C. Avarmi equation was adopted to describe isothermal and nonisothermal crystallization. A new relation suggested by Mo was used to analyze nonisothermal crystallization and gave a good result. The crystallization activation energies have been obtained to be ?583.75 and ?270.06 KJ/mol for isothermal and nonisothermal crystallization, respectively. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1637–1643, 2005  相似文献   

11.
DSC thermal analysis and X‐ray diffraction have been used to investigate the isothermal crystallization behavior and crystalline structure of nylon 6/clay nanocomposites. Nylon 6/clay has prepared by the intercalation of ε‐caprolactam and then exfoliating the layered silicates by subsequent polymerization. The DSC isothermal results reveal that introducing saponite into the nylon structure causes strongly heterogeneous nucleation induced change of the crystal growth process from a two‐dimensional crystal growth to a three dimensional spherulitic growth. But the crystal growth mechanism of nylon/montmorillonite nanocomposites is a mixed two‐dimensional and three‐dimensional spherulitic growth. The activation energy drastically decreases with the presence of 2.5 wt % clay in nylon/clay nanocomposites and then slightly increases with increasing clay content. The result indicates that the addition of clay into nylon induces the heterogeneous nucleation (a lower ΔE) at lower clay content and then reduces the transportation ability of polymer chains during crystallization processes at higher clay content (a higher ΔE). The correlation among crystallization kinetics, melting behavior, and crystalline structure of nylon/clay nanocomposites is also discussed. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2196–2204, 2004  相似文献   

12.
The melting behavior of semicrystalline poly(ether ether ketone ketone) (PEEKK) has been studied by differential scanning calorimetry (DSC). When PEEKK is annealed from the amorphous state, it usually shows two melting peaks. The upper melting peaks arise first, and the lower melting peaks are developed later. The upper melting peaks shown in the DSC thermogram are the combination (addition) of three parts: initial crystal formed before scanning; reorganization; and melting-recrystallization of lower melting peaks in the DSC scanning period. In the study of isothermal crystallization kinetics, the Avrami equation was used to analyze the primary process of the isothermal crystallization; the Avrami constant, n, is about 2 for PEEKK from the melt and 1.5 for PEEKK from the glass state. According to the Lauritzen-Hoffman equation, the kinetic parameter of PEEKK from the melt is 851.5 K; the crystallization kinetic parameter of PEEKK is higher than that of PEEK, and suggests the crystallizability of PEEKK is less than that of PEEK. The study of crystallization on PEEKK under nonisothermal conditions is also reported for cooling rates from 2.5°C/min to 40°C/min, and the nonisothermal condition was studied by Mandelkern analysis. The results show the nonisothermal crystallization is different from the isothermal crystallization. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
The crystallization process of a new polyamide, nylon 1313, from the melt has been thoroughly investigated under isothermal and nonisothermal conditions. During isothermal crystallization, relative crystallinity develops in accordance with the Avrami equation with the exponent n ≈ 2 based on DSC analysis. Under nonisothermal conditions, several different analysis methods were used to elucidate the crystallization process. The Avrami exponent n is greater in the isothermal crystallization process, indicating that the mode of nucleation and the growth of the nonisothermal crystallization for nylon 1313 are more complicated, and that the nucleation mode might include both homogeneous and heterogeneous nucleation simultaneously. The calculated activation energy is 214.25 kJ/mol for isothermal crystallization by Arrhenius form and 135.1 kJ/mol for nonisothermal crystallization by Kissinger method, respectively. In addition, the crystallization ability of nylon 1313 was assessed by using the kinetic crystallizability parameters G. Based on this parameter, the crystallizability of many different polymers was compared theoretically. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1415–1422, 2007  相似文献   

14.
The isothermal and nonisothermal crystallization kinetics of nylon 1111 was extensively studied using differential scanning calorimetry (DSC). The equilibrium melting temperature of nylon 1111 was determined to be 188°C. In this article, the Avrami equation was used to describe the isothermal crystallization behavior of nylon 1111. On the basis of the DSC results, the Avrami exponent, n, was determined to be around 3 during the isothermal crystallization process. Nonisothermal crystallization was analyzed using both the Avrami equation as modified by Jeziorny and an equation suggested by Mo. The larger value of the Avrami exponent, n, during the nonisothermal crystallization process indicates that the development of nucleation and crystal growth are more complicated during the nonisothermal crystallization for nylon 1111, and that the nucleation mode might simultaneously include both homogeneous and heterogeneous nucleations. The isothermal and nonisothermal crystallization activation energies of nylon 1111 were determined to be ?132 kJ/mol and ?121 kJ/mol using the Arrhenius equation and the Kissinger method, respectively. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

15.
The crystallization and melting behaviour of polypropylene ‘catalloys’ (PP‐cats) as well as pure polypropylene (PP) were investigated using differential scanning calorimetry. The results showed that, for PP‐cats and PP, a single melting peak of PP appeared under slow cooling rate. When the cooling rate is fast enough in the non‐isothermal case, or the crystallization temperature is relatively high in the isothermal case, a shoulder peak appears in front of the melting peak with increasing ethylene content in PP‐cats. It is believed that this shoulder is induced by recrystallization of crystals initially formed during non‐isothermal or isothermal crystallization. When the ethylene component in PP‐cats reached a certain level, there existed a melting peak of polyethylene (PE) crystallized during the cooling process. Polarized optical microscopy (POM) showed that the spherulites formed by PP‐cats were much smaller and had less perfect morphology compared with that formed by pure PP at the same cooling rate. And with the increase of the cooling rate, the spherulites could not be clearly observed. Copyright © 2004 Society of Chemical Industry  相似文献   

16.
Polypropylene (PP) was extruded and injection-molded several times to mimic the effect of recycling procedures on PP. Differential scanning calorimetry (DSC) was used to follow crystallization rates under isothermal conditions in a temperature range of 120–150°C. Melting behavior and equilibrium melting temperatures were studied using the Hoffman-Weeks method of extrapolation. Optical microscopy combined with a hot stage was also used to follow the spherulite microstructure and crystal phase upon recycling of PP. Wide-angle X-ray spectroscopy identified the crystal phase at different isothermal crystallization temperatures. Twin melting peaks obtained for PP melting following isothermal crystallization were associated with crystal rearrangement during fusion. PP spherulite size and equilibrium melting temperatures were seen to increase with processing events, whereas reprocessing decreased nuclei density. © 1996 John Wiley & Sons, Inc.  相似文献   

17.
This work investigated how pre‐melting temperature (Tmax) and cooling rate (C) affected the non‐isothermal melt crystallization, melting behavior and crystal structure of syndiotactic polystyrene (sPS) by using differential scanning calorimetry (DSC) and wide angle X‐ray diffraction (WAXD) techniques. Experimental results indicated that raising Tmax or C decreased the crystallization peak temperature (Tp) and crystallization initiating temperature (Ti). The crystallization kinetics was analyzed through the Ozawa equation. Although the Ozawa exponent n and cooling function K(T) were determined for Tmax = 340°C and Tmax = 315°C specimens, for Tmax = 290°C specimens, the Ozawa equation was not applicable. Activation energies for the non‐isothermal crystallization processes of different Tmax specimens were estimated to be approximately 418 kJ/mol. As Tmax was raised the nucleation rate of sPS became slower. The multiple melting peaks were associated with different polymorphs as well as recrystallized crystals that formed during heating scans. The percentage content of α polymorph formed in the crystals under various crystallization conditions was estimated through WAXD experiments.  相似文献   

18.
This work examined how pre‐melting temperature (Tmax) affects the isothermal melt crystallization kinetics, the resulting melting behavior and crystal structure of syndiotactic polystyrene (sPS) by using differential scanning calorimetry (DSC), polarized light microscopy (PLM) and the wide angle X‐ray diffraction (WAXD) technique. Experimental results indicated that raising Tmax decreased the nucleation rate and the crystal growth rate of sPS. The Avrami equation was also used to analyze the overall crystallization kinetics. The Avrami exponent n and rate constant K were determined for different Tmax specimens at various crystallization temperatures (Tc's). Our results indicated that the nucleation type of sPS is Tmax and Tc dependent as well. Evaluation of the activation energy for the isothermal crystallization processes revealed that it increases from 375 kJmol?1 to 485 kjmol ?1 with an increase of Tmax. From the melting behavior study, we believe that the Tmax and Tc‐dependent multiple melting peaks are associated with different polymorphs as well as recrystallized crystals formed during heating scans. Moreover, the percentage content of α form in the crystals formed under different crystallization conditions was estimated through WAXD experiments.  相似文献   

19.
Isothermal and non‐isothermal crystallization kinetics of long alkane chain segment nylon 1010, 1013 and 1014 were investigated by differential scanning calorimetry. The commonly used Avrami equation and that modified by Jeziorny were employed to fit the isothermal and non‐isothermal crystallizations of nylon 1010, 1013 and 1014, respectively. It was found that the crystallization rate of nylon with a longer alkane chain segment was slower than that of nylon with a shorter one at a given cooling rate. The activation energies for the isothermal and non‐isothermal crystallizations determined by the Arrhenius and the Kissinger methods, respectively, decreased with increase of the alkane chain segment length of nylon 1010, 1013 and 1014. Furthermore, the activation energy of the non‐isothermal crystallization process of these nylons, determined by the isoconversional methods of Flynn and Wall and Ozawa, was found to be a decreasing function of the relative degree of crystallinity. © 2014 Society of Chemical Industry  相似文献   

20.
The conformational changes, crystal structure and melting behavior of poly(ethylene/trimethylene terephthalate) (ET) copolyesters were investigated using in situ Fourier transform infrared (FTIR) spectroscopy, wide‐angle X‐ray diffraction (WAXD), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC) under isothermal crystallization conditions. The results show that the minimum melting temperature was observed in ET53, in which the relative amount of ethylene glycol (EG) to 1,3‐propanediol (PDO) was 52.68/47.32 and the PDO‐dimethyl terephthalate (DMT)‐PDO segments in the molecular chain dominated the crystal formation. The minimum crystallinity of ET copolyesters was found in ET66, in which the relative amount of EG/PDO was 65.91/34.09 and the EG‐DMT‐EG segments in the molecular chain dominated the crystal formation. A rapid and continuous conformational transition in ET copolyesters was observed using in situ FTIR in the first 10 min under isothermal crystallization conditions. The continuously adjusting conformation in the molecules reflects the crystallization of ET copolyesters. Based on the DSC and the X‐ray analyses of the crystallization behavior in the ET copolyesters, crystalline conformation transitions of molecules in ET copolyesters take place rapidly and early. Copyright © 2012 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号