首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Renewable energy is accepted as a key source for the future, not only for Turkey but also for the world. Turkey has a considerably high level of renewable energy sources that can be a part of the total energy network in the country. Turkey is located in the Mediterranean sector of Alpine–Himalayan Tectonic Belt and has a place among the first seven countries in the world in the abundance of geothermal resources. The share of its potential used is, however, only about 2–3%.The main objective of the present study is to review the development of geothermal energy (GE) utilization in Turkey, giving its historical development and opportunities. GE is used for electric power generation and direct utilization in Turkey, which is among the first five countries in the world in geothermal direct use applications. Direct use of geothermal resources has expanded rapidly last 36 years from space heating of single buildings to district heating, greenhouse heating, industrial usage, modern balneology and physical treatment facilities.Turkey presently has one operating geothermal power plant, located near Denizli City in Western Anatolia with an installed capacity of 20.4 MWe and an electrical energy production of 89,597 MW h in 2001. Recently, the total installed capacity has reached 820 MWt for direct use. The total area of geothermal heated greenhouses exceeded over 35 ha with a total heating capacity of 81 MWt. Ground-source (or geothermal) heat pumps (GSHPs) have also been put on the Turkish market since 1998. Though there are no Turkish GSHP manufactures as yet, 207 units have been installed in the country to date, representing a total capacity of 3 MW.GE is a relatively benign energy source, displaying fossil fuels and thus reducing greenhouse gas emissions. So, it is expected that GE development will significantly speed up in the country if the geothermal law becomes effective.  相似文献   

2.
Geothermal energy is mostly utilised in direct applications in Turkey. The equivalent of 61,000 residences are currently heated by geothermal fluids. A total of 665 MWt is utilised for space heating of residential, public and private property, and 565,000 m2 of greenhouses. Geothermal fluids are also used in 195 spas (327 MWt), bringing the total direct use capacity to 992 MWt. ORME Geothermal Inc. has completed the engineering design of a geothermal district heating system that serves the equivalent of nearly 300,000 residences. A total of 170 geothermal fields have been explored so far in Turkey. At Kizildere a single-flash power plant with 20.4 MWe installed capacity is integrated with a factory producing liquid CO2 and dry-ice. A binary cycle power plant with an installed capacity of 25 MWe will be constructed shortly at Aydin/Germencik. The proven geothermal heat capacity, according to data from existing geothermal wells and natural discharges, is 3132 MWt (I. Akkus, MTA General Directorate, oral communication, January 2003).  相似文献   

3.
Turkey is an energy importing nation with more than half of our energy requirements met by imported fuels. Air pollution is becoming a significant environmental concern in the country. In this regard, geothermal energy and other renewable energy sources are becoming attractive solution for clean and sustainable energy future for Turkey. Turkey is the seventh richest country in the world in geothermal energy potential. The main uses of geothermal energy are space heating and domestic hot water supply, greenhouse heating, industrial processes, heat pumps and electricity generation. The district heating system applications started with large-scale, city-based geothermal district heating systems in Turkey, whereas the geothermal district heating centre and distribution networks have been designed according to the geothermal district heating system (GDHS) parameters. This constitutes an important advantage of GDHS investments in the country in terms of the technical and economical aspects. In Turkey, approximately 61,000 residences are currently heated by geothermal fluids. A total of 665 MWt is utilized for space heating of residential, public and private property, and 565,000 m2 of greenhouses. The proven geothermal heat capacity, according to data from existing geothermal wells and natural discharges, is 3132 MWt. Present applications have shown that geothermal energy is clean and much cheaper compared to the other fossil and renewable energy sources for Turkey.  相似文献   

4.
Geothermal energy is extensively used in thermal (direct) applications in Iceland. More than 70% of the total population enjoy geothermal district heating. Hydro-power provides most of the electricity generated in Iceland, with less than 10% of the potential harnessed. Iceland is well endowed with both geothermal (high- and low-temperature) and hydro-power resources. At the end of 1980, the installed geothermal power in Iceland was 818 MW1 in direct applications and 41 MWe in electric power generation. This exploitation represents a few percent of the estimated geothermal resources of Iceland. Plans to develop geothermal electric power in Iceland date back to the early 1960s. The first geothermal electric power plant (3 MWe) was installed in 1969. In recent years, several small-scale (two 1 MWe and one 6 MWe) geothermal power units have been installed in a cogeneration plant for district heating purposes. There is one major (30 MWe) geothermal electric power plant in Iceland, which became operational in 1978. Hydro-power, geothermal energy and oil provide consumers in Iceland with about 18, 38, and 44% of their energy needs, respectively.  相似文献   

5.
At present geothermal energy is utilized in Russia mostly for space and district heating, and for industrial and agricultural purposes. Six towns whith a total population of about 100,000 use geothermal district heating systems. The total area of geothermally heated greenhouses is about 700,000 m2. Electric energy generated at geothermal power stations remains negligible: the installed capacity of the only operating Pauzhetskaya station (Kamchatka) is 11 MWe. Another station at the Mutnovsky geothermal field is currently under construction and is expected to have 70 MWe, installed by 1995 and 210 MWe, by 2000. The proven geothermal resources in Russia provide hope for a significant increase in the utilization of the earth's deep heat and a significant contribution to the power budget in the near future.  相似文献   

6.
This paper describes the status of geothermal energy utilization—direct use—in Hungary, with emphasis on developments between 2000 and 2002. The level of utilization of geothermal energy in the world increased in this period and geothermal energy was the leading producer, with 70% of the total electricity production, of all the renewable energy sources (wind, solar, geothermal and tidal), followed by wind energy at 28%. The current cost of direct heat use from biomass is 1–5 US¢/kWh, geothermal 0.5–5 US¢/kWh and solar heating 3–20 US¢/kWh. The data relative to direct use in Hungary decreased in this period and the contribution of geothermal energy to the energy balance of Hungary, despite significant proven reserves (with reinjection) of 380 million m3/year, with a heat content of 63.5 PJ/a at ΔT=40 °C, remained very low (0.25%). Despite the fact that geothermal fluids with temperatures at the surface higher than 100 °C are available, no electricity has been generated. As of 31 December 2002, the geothermal capacity utilised in direct applications in Hungary is estimated to be 324.5 MWt and to produce 2804 TJ/year. Geothermal heat pumps represent about 4.0 MWt of this installed capacity. The quantity of thermal water produced for direct uses in 2002 was approximately 22 million m3, with an average utilization temperature of 31 °C. The main consumer of geothermal energy is agriculture (68% of the total geothermal heat dedicated to direct uses). The geothermal water is used only in five spas for space heating and sanitary hot water (SHW), although there are 260 spas in the country, and the thermal water produced has an average surface temperature of 68 °C. The total heat capacity installed in the spas is approximately 1250 MWt; this is not provided by geothermal but could be, i.e., geothermal could provide more than three times the geothermal capacity utilized in direct uses by 31 December 2002 (324.5 MWt).  相似文献   

7.
A survey conducted by the Swiss Federal Office of Energy in the mid 1990s proved that a significant number of existing tunnels, with an estimated total heat potential of 30 MWt, is suitable for further development. The tunnel water available in five sites in the Alps is currently utilised for space heating and sanitary warm water supply, and five more will be available in the near future. An additional 30 MWt of geothermal energy is estimated to be available at the portals of two important Alpine tunnels now under construction, the Lötschberg (35 km long) and the Gotthard (57 km). A further approximately 35 MWt is expected from tunnels scheduled for construction during the next ten years. A total of almost 80 MWt could thus be achieved by 2012–2014. Theoretical estimates of the geothermal potential of future tunnels also account for cooling effects and the inevitable reductions in water inflow rate during and after tunnel construction. Advanced computational methods and practical tools for potential assessment have been developed in order to obtain realistic values and thus facilitate the early planning of near-portal heating systems. Careful planning and close cooperation between tunnel management and heat consumers can contribute to optimizing the utilization of this interesting form of geothermal energy.  相似文献   

8.
The paper offers a brief overview of the current direct geothermal uses in Greece and discusses their characteristics, with emphasis to the economical and technical problems encountered. Greece holds a prominent place in Europe regarding the existence of promising geothermal resources (both high and low-enthalpy), which can be economically exploited. Currently, no geothermal electricity is produced in Greece. The installed capacity of direct uses at the end of 2009 is estimated at about 155 MWt, exhibiting an increase of more than 100% compared to the figures reported at the World Geothermal Congress 2005. The main uses, in decreasing share, are geothermal heat pumps, swimming and balneology, greenhouse heating and soil warming. Earth-coupled and groundwater (or seawater) heat pumps have shown a drastic expansion during the past 2–3 years, mainly due to high oil prices two years ago and easing of the license requirements for drilling shallow wells.  相似文献   

9.
Geothermal resources in Poland are of growing importance for the production of renewable energy. The total installed geothermal capacity (including heat pumps) at the end of 2008 was ca. 281 MWt, while heat sales about 1501 TJ. Poland is characterised by low-temperature geothermal resources connected mostly with the Mesozoic sedimentary formations. In the paper the estimation of thermodynamic potential of Polish geothermal fields in comparison with selected global resources was presented. Geothermal resources were classified with reference to their specific exergy and specific exergy index (SEI). These indices define the quality of the energy content of a geothermal fluid better than conventional temperature criterions.  相似文献   

10.
Direct (non-electrical) uses of geothermal energy in Iceland in 1984 amounted to 5517 GWh and the installed power was 889 MWt, assuming 35°C discharge temperature. The bulk of this thermal power was for district heating, called hitaveita in Icelandic. In recent years this utilization has increased moderately. The installed geothermal electric power is currently 41 MWe and is unlikely to change in the near future. Icelandic personnel have participated in many geothermal projects of the United Nations during the last 35 years. Contract work has been carried out by Icelandic consulting firms in several developing countries.  相似文献   

11.
With an installed geothermal electric capacity of 853 MWe, Mexico is currently the third largest producer of geothermal power worldwide, after the USA and the Philippines. There are four geothermal fields now under exploitation: Cerro Prieto, Los Azufres, Los Humeros and Las Tres Vírgenes. Cerro Prieto is the second largest field in the world, with 720 MWe and 138 production wells in operation; sedimentary (sandstone) rocks host its geothermal fluids. Los Azufres (88 MWe), Los Humeros (35 MWe) and Las Tres Vírgenes (10 MWe) are volcanic fields, with fluids hosted by volcanic (andesites) and intrusive (granodiorite) rocks. Four additional units, 25 MWe each, are under construction in Los Azufres and due to go into operation in April 2003. One small (300 kW) binary-cycle unit is operating in Maguarichi, a small village in an isolated area with no link to the national grid. The geothermal power installed in Mexico represents 2% of the total installed electric capacity, but the electricity generated from geothermal accounts for almost 3% of the national total.  相似文献   

12.
A socio-economic study has been made of the possible use of low enthalpy geothermal resources for district and greenhouse heating in the Traianoupolis Evros region. The thermal energy potential of the Aristino-Traianoupolis geothermal field has been estimated at 10.8 MWth (discharge temperature of 25 °C). Geothermal wellhead water temperatures range from 53 to 92 °C, from 300 m deep wells yielding over 250 m3/h. Our conclusions show, amongst the different scenarios examined and on the basis of a market study, that utilisation of this geothermal energy capacity for district heating of nearby villages, and/or greenhouse heating directed at serving local vegetable markets, would be an attractive investment.  相似文献   

13.
Geothermal energy is the energy contained as heat in the Earth’s interior. This overview describes the internal structure of the Earth together with the heat transfer mechanisms inside mantle and crust. It also shows the location of geothermal fields on specific areas of the Earth. The Earth’s heat flow and geothermal gradient are defined, as well as the types of geothermal fields, the geologic environment of geothermal energy, and the methods of exploration for geothermal resources including drilling and resource assessment.Geothermal energy, as natural steam and hot water, has been exploited for decades to generate electricity, and both in space heating and industrial processes. The geothermal electrical installed capacity in the world is 7974 MWe (year 2000), and the electrical energy generated is 49.3 billion kWh/year, representing 0.3 % of the world total electrical energy which was 15,342 billion kWh in 2000. In developing countries, where total installed electrical power is still low, geothermal energy can play a significant role: in the Philippines 21% of electricity comes from geothermal steam, 20% in El Salvador, 17% in Nicaragua, 10% in Costa Rica and 8% in Kenya. Electricity is produced with an efficiency of 10–17%. The geothermal kWh is generally cost-competitive with conventional sources of energy, in the range 2–10 UScents/kWh, and the geothermal electrical capacity installed in the world (1998) was 1/5 of that from biomass, but comparable with that from wind sources.The thermal capacity in non-electrical uses (greenhouses, aquaculture, district heating, industrial processes) is 15,14 MWt (year 2000). Financial investments in geothermal electrical and non-electrical uses world-wide in the period 1973–1992 were estimated at about US$22,000 million. Present technology makes it possible to control the environmental impact of geothermal exploitation, and an effective and easily implemented policy to encourage geothermal energy development, and the abatement of carbon dioxide emissions would take advantage from the imposition of a carbon tax. The future use of geothermal energy from advanced technologies such as the exploitation of hot dry rock/hot wet rock systems, magma bodies and geopressured reservoirs, is briefly discussed. While the viability of hot dry rock technology has been proven, research and development are still necessary for the other two sources. A brief discussion on training of specialists, geothermal literature, on-line information, and geothermal associations concludes the review.  相似文献   

14.
Ruggero Bertani   《Geothermics》2005,34(6):905-690
A review has been made of all the country update papers submitted to the World Geothermal Congress 2005 (WGC2005) from countries in which geothermal electricity is currently being generated. The most significant data to emerge from these papers, and from follow-up contacts with representatives of these countries, are: (1) a total of 24 countries now generate electricity from geothermal resources; (2) the total installed capacity worldwide is approximately 8930 MWe, corresponding to about 8030 MWe running capacity and electric energy production is nearly 57,000 GWh (early 2005 data); (3) Costa Rica, France (Guadeloupe), Iceland, Indonesia, Italy1, Kenya, Mexico, Nicaragua, Russia, and the USA have increased the capacity of their power plant installations by more than 10% with respect to the year 2000; (4) the new members of the geothermal electricity generating community comprise Austria, Germany and Papua New Guinea; (5) the installed capacity in Argentina and Greece is now null since their geothermal power plants have been dismantled; (6) nineteen countries have carried out significant geothermal drilling operations since 2000, with 307 new wells drilled.  相似文献   

15.
This study provides information on power generation via geothermal resources and sector development. The first instance of power generation from geothermal resources was performed by a state-owned power plant at Kızıldere-Denizli, whereas the first private sector investment was the Dora-I power plant, commissioned in 2006. Legislation regulating rights ownership and certification laws was issued in 2007. The installed capacity of the geothermal resources is 311.871 MW for 16 power plants, and power generation licenses were issued for 713.541 MW at the end of 2012. The total potential geothermal power that can be generated in Turkey is estimated to be approximately 2000 MW. The geothermal fields in Turkey produce high levels of greenhouse gases, which have been deemed highly responsible for global warming. Due to high CO2 emissions, the geothermal energy sector risks a carbon tax in the near future. For certain geothermal resources, multiple investors produce electricity from the same resource. The sector will inevitably experience severe damage unless permanent solutions are devised for problems related to sustainably managing geothermal resources and environmental problems.  相似文献   

16.
The Ahuachapán geothermal field (AGF) is located in north western El Salvador. To date, 53 wells (20 producers and 8 injectors) have been drilled in the Ahuachapán geothermal field and the adjacent Chipilapa area. Over the past 33 years, 550 Mtonnes have been extracted from the reservoir, and the reservoir pressure has declined by more than 15 bars. By 1985, the large pressure drawdown due to over-exploitation of the resource reduced the power generation capacity to only 45 MWe. Several activities were carried out in the period 1997–2005 as part of “stabilization” and “optimization” projects to increase the electric energy generation to 85 MWe, with a total mass extraction of 850 kg/s.  相似文献   

17.
Geothermal electricity production in Indonesia began with the operation of a 0.25 MWe pilot project in Kamojang geothermal field, in 1978. Commercial operation started in 1983, with the commissioning of the 30 MWe Unit-1 power plant. In 1987, an additional capacity of 110 MWe was provided by the Unit-2 and Unit-3 power plants. The addition of the 60 MWe Unit-4 power plant in 2008 increased the total generating capacity to 200 MWe. The 27 years of commercial operation have led to a slight decline in reservoir pressure and temperature within the active production sector. The most recent significant change in the field conditions and performance occurred following the 2008 increase in generating capacity from 140 to 200 MWe. The production decline of individual wells has been relatively low, at an average of 3%/yr. However, the increased rate of steam withdrawal might negatively affect long-term sustainability of energy production at Kamojang unless suitable field management strategies are implemented. In order to stabilize the steam flow, it has been necessary to drill about three make-up wells every 2–3 years. The unbalanced mass extraction, where less than 30% of the produced steam mass can be injected, is a serious concern for long-term reservoir management in Kamojang. The field operator (Pertamina) plans to increase the Kamojang generating capacity from 200 to 230 MWe (Unit 5) and optimize the long-term performance of the Kamojang geothermal resource. The response of the reservoir during the previous three decades is being used to guide reservoir development for the planned increase in production capacity.  相似文献   

18.
19.
Geothermal energy, a relatively benign energy source when compared with other energy sources due to reduction in greenhouse gas emissions, is used for electricity generation and direct utilization. Turkey has a place among the first seven countries in the world in the abundance of geothermal resources, but it has only used about 4% of its potential. The paper presents the status of energy needs and renewables, potential, utilization and the importance of geothermal energy in Turkey. It also gives a comparison between geothermal energy and other energy sources regarding environmental issues. It is estimated that if the geothermal heating potential alone in Turkey is used, 5 million residences will be heated and as a result, releases of 48 million ton/year CO2 emissions into the atmosphere will be prevented. In addition to this, if the other geothermal potential (i.e. electricity) is used it will provide considerable environmental benefits. Therefore, it is expected that geothermal energy development will significantly speed up in the future.  相似文献   

20.
The main objective of the present study is twofold: (i) to analyze thermal loads of the geothermally and passively heated solar greenhouses; and (ii) to investigate wind energy utilization in greenhouse heating which is modeled as a hybrid solar assisted geothermal heat pump and a small wind turbine system which is separately installed in the Solar Energy Institute of Ege University, Izmir, Turkey. The study shows 3.13% of the total yearly electricity energy consumption of the modeled system (3568 kWh) or 12.53% of the total yearly electricity energy consumptions of secondary water pumping, brine pumping, and fan coil (892 kWh) can be met by using small wind turbine system (SWTS) theoretically. According to this result, modeled passive solar pre heating technique and combined with geothermal heat pump system (GHPS) and SWTS can be economically preferable to the conventional space heating/cooling systems used in agricultural and residential building heating applications if these buildings are installed in a region, which has a good wind resource.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号